Description Usage Arguments Value Examples
Estimate the 3PL model using the joint or marginal maximum likelihood estimation methods
model_3pl_eap
scores response vectors using the EAP method
model_3pl_map
scores response vectors using the MAP method
model_3pl_jmle
estimates the item and ability parameters
using the joint maximum likelihood estimation (JMLE) method
model_3pl_mmle
estimates the item parameters using the
marginal maximum likelihood estimation (MMLE) method
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 | model_3pl_eap(u, a, b, c, D = 1.702, priors = c(0, 1),
bounds_t = c(-4, 4))
model_3pl_map(u, a, b, c, D = 1.702, priors = c(0, 1),
bounds_t = c(-4, 4), iter = 30, conv = 0.001)
model_3pl_dv_Pt(t, a, b, c, D)
model_3pl_dv_Pa(t, a, b, c, D)
model_3pl_dv_Pb(t, a, b, c, D)
model_3pl_dv_Pc(t, a, b, c, D)
model_3pl_dv_jmle(pdv_fn, u, t, a, b, c, D)
model_3pl_jmle(u, t = NA, a = NA, b = NA, c = NA, D = 1.702,
iter = 100, conv = 0.001, nr_iter = 10, scale = c(0, 1),
bounds_t = c(-4, 4), bounds_a = c(0.01, 2.5), bounds_b = c(-4, 4),
bounds_c = c(0, 0.4), priors = list(t = c(0, 1)), decay = 1,
verbose = FALSE, true_params = NULL)
model_3pl_dv_mmle(pdv_fn, u, quad, a, b, c, D)
model_3pl_mmle(u, t = NA, a = NA, b = NA, c = NA, D = 1.702,
iter = 100, conv = 0.001, nr_iter = 10, bounds_t = c(-4, 4),
bounds_a = c(0.01, 2.5), bounds_b = c(-4, 4), bounds_c = c(0, 0.4),
priors = list(t = c(0, 1)), decay = 1, quad = "11",
score_fn = c("eap", "map"), verbose = FALSE, true_params = NULL)
model_3pl_fitplot(u, t, a, b, c, D = 1.702, index = NULL,
intervals = seq(-3, 3, 0.5))
|
u |
observed response matrix, 2d matrix |
a |
discrimination parameters, 1d vector (fixed value) or NA (freely estimate) |
b |
difficulty parameters, 1d vector (fixed value) or NA (freely estimate) |
c |
pseudo-guessing parameters, 1d vector (fixed value) or NA (freely estimate) |
D |
the scaling constant, 1.702 by default |
priors |
prior distributions, a list |
bounds_t |
the bounds of ability parameters |
iter |
the maximum iterations, default=100 |
conv |
the convergence criterion |
t |
ability parameters, 1d vector (fixed value) or NA (freely estimate) |
pdv_fn |
the function to compute derivatives of P w.r.t the estimating parameters |
nr_iter |
the maximum newton-raphson iterations, default=10 |
scale |
the mean and SD of the theta scale, default= |
bounds_a |
the bounds of discrimination parameters |
bounds_b |
the bounds of difficulty parameters |
bounds_c |
the bounds of guessing parameters |
decay |
decay rate, default=1 |
verbose |
TRUE to print details for debugging |
true_params |
a list of true parameters for evaluating the parameter recovery |
quad |
the number of quadrature points |
score_fn |
the scoring function: 'eap' or 'map' |
index |
the indices of items being plotted |
intervals |
intervals on the x-axis |
model_3pl_eap
returns theta estimates and standard errors in a list
model_3pl_map
returns theta estimates in a list
model_3pl_jmle
returns estimated t, a, b, c parameters in a list
model_3pl_mmle
returns estimated t, a, b, c parameters in a list
model_3pl_fitplot
returns a ggplot
object
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | with(model_3pl_gendata(10, 40),
cbind(true=t, est=model_3pl_eap(u, a, b, c)$t))
with(model_3pl_gendata(10, 40),
cbind(true=t, est=model_3pl_map(u, a, b, c)$t))
# generate data
x <- model_3pl_gendata(2000, 40)
# free estimation, 40 iterations
y <- model_3pl_jmle(x$u, true_params=x, iter=40, verbose=TRUE)
# fix c-parameters, 40 iterations
y <- model_3pl_jmle(x$u, c=0, true_params=x, iter=40)
# generate data
x <- model_3pl_gendata(2000, 40)
# free estimation, 40 iterations
y <- model_3pl_mmle(x$u, true_params=x, iter=40, verbose=TRUE)
with(model_3pl_gendata(1000, 20),
model_3pl_fitplot(u, t, a, b, c, index=c(1, 3, 5)))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.