Earthquake Wrap Uo

Description

Calculate error and summary information on earthquake location.

Usage

1
eqwrapup(Ldat, EQ, vel, distwt=20, lambdareg = 0.0, verbose=FALSE)

Arguments

Ldat

List of station arrival times, lat-lon, and uncertainty

EQ

List of earthquake location: Lat-Lon-z-t

vel

velocity model

distwt

distance weight, default=20

lambdareg

numeric, regularization parameter (default=0)

verbose

logical, TRUE=print information to screen

Details

Earthquakes are located with a generalized inverse (SVD). covariance matrix is extracted and 95% confidence bounds are calculated. Quality factors Q1 and Q1 estimate the quality iof the location based on the gap, minimum distance and rms.

Value

List

rms

Root Mean Square Residual

meanres

Mean Residual

sdres

Standard Dev of residuals

sdmean

Standard error of mean residual

sswres

Sum squared weighted residuals

ndf

Number of Degrees of Freedom

sterrx

km, error in X (East-West)

sterry

km, error in Y (North-South)

sterrz

km, error in Z, (depth)

sterrt

s, Delta-time

cov

covariance matrix (used for error ellipsoids)

lam

lambda

gap

Spatial gap (max subtended angle)

herr

Horizontal error

distmin

Minimum distance to epicenter

Q1

Quality Factor based on Gap and RMS

Q2

Quality factor based on RMS, depth and min-Distance

Note

The Damping parameter (lambda) is set to zero. In the UW lquake program, lambda is set to 0.02.

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

Klocate, Glocate, getGAP

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
## Not run: 
library(RSEIS)
data(GH)
data(wu_coso.vel)
vel = wu_coso.vel


gpf = GH$pickfile

w1 = which(gpf$STAS$phase=="P" | gpf$STAS$phase=="S" )

N = length(w1)

 Ldat =    list(
      name = gpf$STAS$name[w1],
      sec = gpf$STAS$sec[w1],
      phase = gpf$STAS$phase[w1],
      lat=gpf$STAS$lat[w1],
      lon = gpf$STAS$lon[w1],
      z = gpf$STAS$z[w1],
      err= gpf$STAS$err[w1],
      yr = rep(gpf$LOC$yr , times=N),
      jd = rep(gpf$LOC$jd, times=N),
      mo = rep(gpf$LOC$mo, times=N),
      dom = rep(gpf$LOC$dom, times=N),
      hr =rep( gpf$LOC$hr, times=N),
      mi = rep(gpf$LOC$mi, times=N) )

EQ = GH$pickfile$LOC

EQ$t = EQ$sec

kuality = eqwrapup(Ldat, EQ, vel, distwt = 20, verbose = TRUE )

names(kuality)

## End(Not run)

Want to suggest features or report bugs for rdrr.io? Use the GitHub issue tracker.