| urgig | R Documentation |
UNU.RAN random variate generator for the Generalized Inverse Gaussian
Distribution with parameters lambda and omega.
It also allows sampling from the truncated distribution.
[Special Generator] – Sampling Function: GIG (generalized inverse Gaussian).
urgig(n, lambda, omega, lb=1.e-12, ub=Inf)
n |
size of required sample. |
lambda |
(strictly positive) shape parameter. |
omega |
(strictly positive) shape parameter. |
lb |
lower bound of (truncated) distribution |
ub |
upper bound of (truncated) distribution |
The Generalized Inverse Gaussian distribution with parameters
lambda =\lambda and omega =\omega
has a density proportional to
f(x) \sim x^{\lambda-1}\exp(-(\omega/2)(x+1/x))
for x \ge 0, \lambda > 0 and \omega > 0.
The generation algorithm uses transformed density rejection ‘TDR’. The
parameters lb and ub can be used to generate variates from
the distribution truncated to the interval (lb,ub).
The generation algorithm works for
\lambda \ge 1 and \omega>0 and
for \lambda>0 and \omega \ge 0.5.
This function is wrapper for the UNU.RAN class in R.
Josef Leydold and Wolfgang H\"ormann unuran@statmath.wu.ac.at.
W. H\"ormann, J. Leydold, and G. Derflinger (2004): Automatic Nonuniform Random Variate Generation. Springer-Verlag, Berlin Heidelberg.
N.L. Johnson, S. Kotz, and N. Balakrishnan (1994): Continuous Univariate Distributions, Volume 1. 2nd edition, John Wiley & Sons, Inc., New York. Chap.15, p.284.
runif and .Random.seed about random number
generation and unuran for the UNU.RAN class.
## Create a sample of size 1000
x <- urgig(n=1000,lambda=2,omega=3)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.