Nothing
# Generated by using Rcpp::compileAttributes() -> do not edit by hand
# Generator token: 10BE3573-1514-4C36-9D1C-5A225CD40393
removableDrive <- function(driveRoot) {
.Call(`_RxODE_removableDrive`, driveRoot)
}
#' Scaled Inverse Chi Squared distribution
#'
#' @param n Number of random samples
#'
#' @param nu degrees of freedom of inverse chi square
#'
#' @param scale Scale of inverse chi squared distribution
#' (default is 1).
#'
#' @return a vector of inverse chi squared deviates.
#'
#' @examples
#' rinvchisq(3, 4, 1) ## Scale = 1, degrees of freedom = 4
#' rinvchisq(2, 4, 2) ## Scale = 2, degrees of freedom = 4
#' @export
rinvchisq <- function(n = 1L, nu = 1.0, scale = 1) {
.Call(`_RxODE_rinvchisq`, n, nu, scale)
}
#' One correlation sample from the LKJ distribution
#'
#' @param d The dimension of the correlation matrix
#'
#' @param eta The scaling parameter of the LKJ distribution.
#' Must be > 1. Also related to the degrees of freedom nu.
#' eta = (nu-1)/2.
#'
#' @param cholesky boolean; If `TRUE` return the cholesky
#' decomposition.
#'
#' @return A correlation sample from the LKJ distribution
#'
#' @author Matthew Fidler (translated to RcppArmadillo) and Emma Schwager
#' @export
rLKJ1 <- function(d, eta = 1.0, cholesky = FALSE) {
.Call(`_RxODE_rLKJ1`, d, eta, cholesky)
}
rLKJcv1 <- function(sd, eta = 1.0) {
.Call(`_RxODE_rLKJcv1`, sd, eta)
}
rLKJcvLsd1 <- function(logSd, logSdSD, eta = 1.0) {
.Call(`_RxODE_rLKJcvLsd1`, logSd, logSdSD, eta)
}
#' One correlation sample from the Inverse Wishart distribution
#'
#' This correlation is constructed by transformation of the Inverse Wishart
#' random covariate to a correlation.
#'
#' @inheritParams rLKJ1
#'
#' @param nu Degrees of freedom of the Wishart distribution
#'
#' @inheritParams cvPost
#'
#' @return One correlation sample from the inverse wishart
#'
#' @author Matthew Fidler
#' @export
invWR1d <- function(d, nu, omegaIsChol = FALSE) {
.Call(`_RxODE_invWR1d`, d, nu, omegaIsChol)
}
rcvC1 <- function(sdEst, nu = 3.0, diagXformType = 1L, rType = 1L, returnChol = FALSE) {
.Call(`_RxODE_rcvC1`, sdEst, nu, diagXformType, rType, returnChol)
}
cvPost_ <- function(nuS, omegaS, nS, omegaIsCholS, returnCholS, typeS, diagXformTypeS) {
.Call(`_RxODE_cvPost_`, nuS, omegaS, nS, omegaIsCholS, returnCholS, typeS, diagXformTypeS)
}
expandTheta_ <- function(thetaS, thetaMatS, thetaLowerS, thetaUpperS, nStudS, nCoresRVS) {
.Call(`_RxODE_expandTheta_`, thetaS, thetaMatS, thetaLowerS, thetaUpperS, nStudS, nCoresRVS)
}
expandPars_ <- function(objectS, paramsS, eventsS, controlS) {
.Call(`_RxODE_expandPars_`, objectS, paramsS, eventsS, controlS)
}
nestingInfo_ <- function(omega, data) {
.Call(`_RxODE_nestingInfo_`, omega, data)
}
etDollarNames <- function(obj) {
.Call(`_RxODE_etDollarNames`, obj)
}
etUpdate <- function(obj, arg = NULL, value = NULL, exact = TRUE) {
.Call(`_RxODE_etUpdate`, obj, arg, value, exact)
}
et_ <- function(input, et__) {
.Call(`_RxODE_et_`, input, et__)
}
etSeq_ <- function(ets, handleSamples = 0L, waitType = 0L, defaultIi = 0, rbind = FALSE, uniqueId = 0L, reserveLen = 0L, needSort = TRUE, newUnits = as.character( c()), newShow = as.logical( c()), isCmtIntIn = FALSE) {
.Call(`_RxODE_etSeq_`, ets, handleSamples, waitType, defaultIi, rbind, uniqueId, reserveLen, needSort, newUnits, newShow, isCmtIntIn)
}
etRep_ <- function(curEt, times, wait, ids, handleSamples, waitType, ii) {
.Call(`_RxODE_etRep_`, curEt, times, wait, ids, handleSamples, waitType, ii)
}
#' Force using base order for RxODE radix sorting
#'
#' @param forceBase boolean indicating if RxODE should use R's
#' [order()] for radix sorting instead of
#' `data.table`'s parallel radix sorting.
#'
#' @return NILL; called for side effects
#'
#' @examples
#' \donttest{
#' forderForceBase(TRUE) # Use base `order` for RxODE sorts
#' forderForceBase(FALSE) # Use `data.table` for RxODE sorts
#' }
#'@export
forderForceBase <- function(forceBase = FALSE) {
.Call(`_RxODE_forderForceBase`, forceBase)
}
#' Set Initial conditions to time zero instead of the first observed/dosed time
#'
#' @param ini0 When `TRUE` (default), set initial conditions to time
#' zero. Otherwise the initial conditions are the first observed
#' time.
#'
#' @return the boolean ini0, though this is called for its side effects
#'
#' @export
rxSetIni0 <- function(ini0 = TRUE) {
.Call(`_RxODE_rxSetIni0`, ini0)
}
#' Event translation for RxODE
#'
#' @param inData Data frame to translate
#'
#' @param obj Model to translate data
#'
#' @param addCmt Add compartment to data frame (default `FALSE`).
#'
#' @param dropUnits Boolean to drop the units (default `FALSE`).
#'
#' @param allTimeVar Treat all covariates as if they were time-varying
#'
#' @param keepDosingOnly keep the individuals who only have dosing records and any
#' trailing dosing records after the last observation.
#'
#' @param combineDvid is a boolean indicating if RxODE will use `DVID` on observation
#' records to change the `cmt` value; Useful for multiple-endpoint nlmixr models. By default
#' this is determined by `option("RxODE.combine.dvid")` and if the option has not been set,
#' this is `TRUE`. This typically does not affect RxODE simulations.
#'
#' @param keep This is a named vector of items you want to keep in the final RxODE dataset.
#' For added RxODE event records (if seen), last observation carried forward will be used.
#'
#' @return Object for solving in RxODE
#'
#' @keywords internal
#'
#' @export
etTrans <- function(inData, obj, addCmt = FALSE, dropUnits = FALSE, allTimeVar = FALSE, keepDosingOnly = FALSE, combineDvid = NULL, keep = character(0)) {
.Call(`_RxODE_etTrans`, inData, obj, addCmt, dropUnits, allTimeVar, keepDosingOnly, combineDvid, keep)
}
rxExpandGrid_ <- function(c1, c2, type) {
.Call(`_RxODE_rxExpandGrid_`, c1, c2, type)
}
rxExpandSens_ <- function(state, calcSens) {
.Call(`_RxODE_rxExpandSens_`, state, calcSens)
}
rxExpandSens2_ <- function(state, s1, s2) {
.Call(`_RxODE_rxExpandSens2_`, state, s1, s2)
}
rxExpandFEta_ <- function(state, neta, pred) {
.Call(`_RxODE_rxExpandFEta_`, state, neta, pred)
}
rxRepR0_ <- function(neta) {
.Call(`_RxODE_rxRepR0_`, neta)
}
rxExpandNesting <- function(obj, nestingInfo, compile = FALSE) {
.Call(`_RxODE_rxExpandNesting`, obj, nestingInfo, compile)
}
#' Inductive linearization solver
#'
#' @param cSub = Current subject number
#' @param op - RxODE solving options
#' @param tp - Prior time point/time zeor
#' @param yp - Prior state; vector size = neq; Final state is updated here
#' @param tf - Final Time
#' @param InfusionRate = Rates of each comparment; vector size = neq
#' @param on Indicator for if the compartment is "on"
#' @param cache
#' 0 = no Cache
#' When doIndLin == 0, cache > 0 = nInf-1
#' @param ME the RxODE matrix exponential function
#' @param IndF The RxODE Inductive Linearization function F
#'
#' @return Returns a status for solving
#'
#' 1 = Successful solve
#'
#' -1 = Maximum number of iterations reached when doing
#' inductive linearization
NULL
rxIndLin_ <- function(states) {
.Call(`_RxODE_rxIndLin_`, states)
}
convertId_ <- function(x) {
.Call(`_RxODE_convertId_`, x)
}
rxQs <- function(x) {
.Call(`_RxODE_rxQs`, x)
}
rxQr <- function(encoded_string) {
.Call(`_RxODE_rxQr`, encoded_string)
}
#' Check the type of an object using Rcpp
#'
#' @param obj Object to check
#' @param cls Type of class. Only s3 classes for lists/environments and primitive classes are checked.
#' For matrix types they are distinguished as `numeric.matrix`, `integer.matrix`,
#' `logical.matrix`, and `character.matrix` as well as the traditional `matrix`
#' class. Additionally checks for `event.data.frame` which is an `data.frame` object
#' with `time`, `evid` and `amt`. (UPPER, lower or Title cases accepted)
#'
#' @return A boolean indicating if the object is a member of the class.
#'
#' @keywords internal
#'
#' @author Matthew L. Fidler
#'
#' @export
#'
rxIs <- function(obj, cls) {
.Call(`_RxODE_rxIs`, obj, cls)
}
getRxFn <- function(name) {
.Call(`_RxODE_getRxFn`, name)
}
dynLoad <- function(dll) {
.Call(`_RxODE_dynLoad`, dll)
}
rxModelVars_ <- function(obj) {
.Call(`_RxODE_rxModelVars_`, obj)
}
#' State variables
#'
#' This returns the model's compartments or states.
#'
#' @inheritParams rxModelVars
#'
#' @param state is a string indicating the state or compartment that
#' you would like to lookup.
#'
#' @return If state is missing, return a character vector of all the states.
#'
#' If state is a string, return the compartment number of the named state.
#'
#' @seealso [RxODE()]
#'
#' @author Matthew L.Fidler
#'
#' @export
rxState <- function(obj = NULL, state = NULL) {
.Call(`_RxODE_rxState`, obj, state)
}
rxParams_ <- function(obj) {
.Call(`_RxODE_rxParams_`, obj)
}
#' Jacobian and parameter derivatives
#'
#' Return Jacobain and parameter derivatives
#'
#' @inheritParams rxModelVars
#'
#' @return A list of the jacobian parameters defined in this RxODE
#' object.
#'
#' @author Matthew L. Fidler
#'
#' @export
rxDfdy <- function(obj) {
.Call(`_RxODE_rxDfdy`, obj)
}
#' Left handed Variables
#'
#' This returns the model calculated variables
#'
#' @inheritParams rxModelVars
#'
#' @return a character vector listing the calculated parameters
#' @seealso \code{\link{RxODE}}
#'
#' @author Matthew L.Fidler
#' @export
rxLhs <- function(obj) {
.Call(`_RxODE_rxLhs`, obj)
}
#' Initial Values and State values for a RxODE object
#'
#' Returns the initial values of the rxDll object
#'
#' @param obj rxDll, RxODE, or named vector representing default
#' initial arguments
#'
#' @param vec If supplied, named vector for the model.
#'
#' @param req Required names, and the required order for the ODE solver
#'
#' @param defaultValue a number or NA representing the default value for
#' parameters missing in `vec`, but required in `req`.
#'
#' @param noerror is a boolean specifying if an error should be thrown
#' for missing parameter values when `default` = `NA`
#'
#' @return Initial values of the rxDll object
#'
#' @keywords internal
#' @author Matthew L.Fidler
#' @export
rxInits <- function(obj, vec = NULL, req = NULL, defaultValue = 0, noerror = FALSE, noini = FALSE, rxLines = FALSE) {
.Call(`_RxODE_rxInits`, obj, vec, req, defaultValue, noerror, noini, rxLines)
}
#' Setup the initial conditions.
#'
#' @param obj RxODE object
#' @param inits A numeric vector of initial conditions.
#' @return initial conditions that were setup
#' @author Matthew L. Fidler
#' @keywords internal
#' @export
rxSetupIni <- function(obj, inits = NULL) {
.Call(`_RxODE_rxSetupIni`, obj, inits)
}
#' Setup the initial conditions.
#'
#' @param obj RxODE object
#'
#' @param inits A numeric vector of initial conditions.
#'
#' @param extraArgs A list of extra args to parse for initial conditions.
#'
#' @author Matthew L. Fidler
#'
#' @keywords internal
#'
#' @return setup scale for changing compartment values
#'
#' @export
rxSetupScale <- function(obj, scale = NULL, extraArgs = NULL) {
.Call(`_RxODE_rxSetupScale`, obj, scale, extraArgs)
}
atolRtolFactor_ <- function(factor) {
invisible(.Call(`_RxODE_atolRtolFactor_`, factor))
}
#' Simulate Parameters from a Theta/Omega specification
#'
#' @param params Named Vector of RxODE model parameters
#'
#' @param nObs Number of observations to simulate (with `sigma` matrix)
#'
#' @inheritParams rxSolve
#'
#' @param simSubjects boolean indicated RxODE should simulate subjects in studies (`TRUE`,
#' default) or studies (`FALSE`)
#'
#' @return a data frame with the simulated subjects
#'
#' @author Matthew L.Fidler
#'
#' @export
rxSimThetaOmega <- function(params = NULL, omega = NULL, omegaDf = NULL, omegaLower = as.numeric( c(R_NegInf)), omegaUpper = as.numeric( c(R_PosInf)), omegaIsChol = FALSE, omegaSeparation = "auto", omegaXform = 1L, nSub = 1L, thetaMat = NULL, thetaLower = as.numeric( c(R_NegInf)), thetaUpper = as.numeric( c(R_PosInf)), thetaDf = NULL, thetaIsChol = FALSE, nStud = 1L, sigma = NULL, sigmaLower = as.numeric( c(R_NegInf)), sigmaUpper = as.numeric( c(R_PosInf)), sigmaDf = NULL, sigmaIsChol = FALSE, sigmaSeparation = "auto", sigmaXform = 1L, nCoresRV = 1L, nObs = 1L, dfSub = 0, dfObs = 0, simSubjects = TRUE) {
.Call(`_RxODE_rxSimThetaOmega`, params, omega, omegaDf, omegaLower, omegaUpper, omegaIsChol, omegaSeparation, omegaXform, nSub, thetaMat, thetaLower, thetaUpper, thetaDf, thetaIsChol, nStud, sigma, sigmaLower, sigmaUpper, sigmaDf, sigmaIsChol, sigmaSeparation, sigmaXform, nCoresRV, nObs, dfSub, dfObs, simSubjects)
}
#' Free the C solving/parsing information.
#'
#' Take the ODE C system and free it.
#'
#' @keywords internal
#' @return logical indicating if the memory was successfully freed
#' @export
rxSolveFree <- function() {
.Call(`_RxODE_rxSolveFree`)
}
rxSolve_ <- function(obj, rxControl, specParams, extraArgs, params, events, inits, setupOnly) {
.Call(`_RxODE_rxSolve_`, obj, rxControl, specParams, extraArgs, params, events, inits, setupOnly)
}
rxSolveDollarNames <- function(obj) {
.Call(`_RxODE_rxSolveDollarNames`, obj)
}
rxSolveGet <- function(obj, arg, exact = TRUE) {
.Call(`_RxODE_rxSolveGet`, obj, arg, exact)
}
rxSolveUpdate <- function(obj, arg = NULL, value = NULL) {
.Call(`_RxODE_rxSolveUpdate`, obj, arg, value)
}
rxSolveSEXP <- function(objS, rxControlS, specParamsS, extraArgsS, paramsS, eventsS, initsS, setupOnlyS) {
.Call(`_RxODE_rxSolveSEXP`, objS, rxControlS, specParamsS, extraArgsS, paramsS, eventsS, initsS, setupOnlyS)
}
rxRmModelLib_ <- function(str) {
invisible(.Call(`_RxODE_rxRmModelLib_`, str))
}
#' Get RxODE model from object
#' @param obj RxODE family of objects
#' @return RxODE model
#' @export
rxGetRxODE <- function(obj) {
.Call(`_RxODE_rxGetRxODE`, obj)
}
#' Checks if the RxODE object was built with the current build
#'
#' @inheritParams rxModelVars
#'
#' @return boolean indicating if this was built with current RxODE
#'
#' @export
rxIsCurrent <- function(obj) {
.Call(`_RxODE_rxIsCurrent`, obj)
}
#' Assign pointer based on model variables
#' @param object RxODE family of objects
#' @return nothing, called for side effects
#' @export
rxAssignPtr <- function(object = NULL) {
invisible(.Call(`_RxODE_rxAssignPtr`, object))
}
#' Return the DLL associated with the RxODE object
#'
#' This will return the dynamic load library or shared object used to
#' run the C code for RxODE.
#'
#' @param obj A RxODE family of objects or a character string of the
#' model specification or location of a file with a model
#' specification.
#'
#' @return a path of the library
#'
#' @keywords internal
#' @author Matthew L.Fidler
#' @export
rxDll <- function(obj) {
.Call(`_RxODE_rxDll`, obj)
}
#' Return the C file associated with the RxODE object
#'
#' This will return C code for generating the RxODE DLL.
#'
#' @param obj A RxODE family of objects or a character string of the
#' model specification or location of a file with a model
#' specification.
#'
#' @return a path of the library
#'
#' @keywords internal
#' @author Matthew L.Fidler
#' @export
rxC <- function(obj) {
.Call(`_RxODE_rxC`, obj)
}
#' Determine if the DLL associated with the RxODE object is loaded
#'
#' @param obj A RxODE family of objects
#'
#' @return Boolean returning if the RxODE library is loaded.
#'
#' @keywords internal
#' @author Matthew L.Fidler
#' @export
rxIsLoaded <- function(obj) {
.Call(`_RxODE_rxIsLoaded`, obj)
}
#' Load RxODE object
#'
#' @param obj A RxODE family of objects
#'
#' @return Boolean returning if the RxODE library is loaded.
#'
#' @keywords internal
#' @author Matthew L.Fidler
#' @export
rxDynLoad <- function(obj) {
.Call(`_RxODE_rxDynLoad`, obj)
}
#' Lock/unlocking of RxODE dll file
#'
#' @param obj A RxODE family of objects
#'
#' @return nothing; called for side effects
#'
#' @export
rxLock <- function(obj) {
.Call(`_RxODE_rxLock`, obj)
}
#' @rdname rxLock
#' @export
rxUnlock <- function(obj) {
.Call(`_RxODE_rxUnlock`, obj)
}
#' Allow unloading of dlls
#'
#' @param allow boolean indicating if garbage collection will unload of RxODE dlls.
#'
#' @return Boolean allow; called for side effects
#'
#' @examples
#'
#' # Garbage collection will not unload un-used RxODE dlls
#' rxAllowUnload(FALSE);
#'
#' # Garbage collection will unload unused RxODE dlls
#' rxAllowUnload(TRUE);
#' @export
#' @author Matthew Fidler
rxAllowUnload <- function(allow) {
.Call(`_RxODE_rxAllowUnload`, allow)
}
rxUnloadAll_ <- function() {
.Call(`_RxODE_rxUnloadAll_`)
}
#' Unload RxODE object
#'
#' @param obj A RxODE family of objects
#'
#' @return Boolean returning if the RxODE library is loaded.
#'
#' @keywords internal
#' @author Matthew L.Fidler
#' @export
rxDynUnload <- function(obj) {
.Call(`_RxODE_rxDynUnload`, obj)
}
#' Delete the DLL for the model
#'
#' This function deletes the DLL, but doesn't delete the model
#' information in the object.
#'
#' @param obj RxODE family of objects
#'
#' @return A boolean stating if the operation was successful.
#'
#' @author Matthew L.Fidler
#' @export
rxDelete <- function(obj) {
.Call(`_RxODE_rxDelete`, obj)
}
setRstudio <- function(isRstudio = FALSE) {
.Call(`_RxODE_setRstudio`, isRstudio)
}
setProgSupported <- function(isSupported = 1L) {
.Call(`_RxODE_setProgSupported`, isSupported)
}
getProgSupported <- function() {
.Call(`_RxODE_getProgSupported`)
}
rxUpdateTrans_ <- function(ret, prefix, libName) {
.Call(`_RxODE_rxUpdateTrans_`, ret, prefix, libName)
}
dropUnitsRxSolve <- function(x) {
.Call(`_RxODE_dropUnitsRxSolve`, x)
}
#' Silence some of RxODE's C/C++ messages
#'
#' @param silent can be 0L "noisy" or 1L "silent"
#'
#' @keywords internal
#' @return TRUE; called for side effects
#' @export
rxSetSilentErr <- function(silent) {
.Call(`_RxODE_rxSetSilentErr`, silent)
}
#' Invert matrix using RcppArmadillo.
#'
#' @param matrix matrix to be inverted.
#'
#' @return inverse or pseudo inverse of matrix.
#'
#' @export
rxInv <- function(matrix) {
.Call(`_RxODE_rxInv`, matrix)
}
#' Get Omega^-1 and derivatives
#'
#' @param invObjOrMatrix Object for inverse-type calculations. If
#' this is a matrix, setup the object for inversion
#' [rxSymInvCholCreate()] with the default arguments and return a
#' reactive s3 object. Otherwise, use the inversion object to
#' calculate the requested derivative/inverse.
#'
#' @param theta Thetas to be used for calculation. If missing (`NULL`), a
#' special s3 class is created and returned to access `Omega^1`
#' objects as needed and cache them based on the theta that is
#' used.
#'
#' @param type The type of object. Currently the following types are
#' supported:
#'
#' * `cholOmegaInv` gives the
#' Cholesky decomposition of the Omega Inverse matrix.
#' * `omegaInv` gives the Omega Inverse matrix.
#' * `d(omegaInv)` gives the `d(Omega^-1)` withe respect to the
#' theta parameter specified in `thetaNumber`.
#' * `d(D)` gives the `d(diagonal(Omega^-1))` with respect to
#' the theta parameter specified in the `thetaNumber`
#' parameter
#'
#' @param thetaNumber For types `d(omegaInv)` and `d(D)`,
#' the theta number that the derivative is taken against. This
#' must be positive from 1 to the number of thetas defining the
#' Omega matrix.
#'
#' @return Matrix based on parameters or environment with all the
#' matrixes calculated in variables `omega`, `omegaInv`, `dOmega`,
#' `dOmegaInv`.
#'
#' @author Matthew L. Fidler
#'
#' @export
rxSymInvChol <- function(invObjOrMatrix, theta = NULL, type = "cholOmegaInv", thetaNumber = 0L) {
.Call(`_RxODE_rxSymInvChol`, invObjOrMatrix, theta, type, thetaNumber)
}
rxSymInvCholEnvCalculate <- function(obj, what, theta = NULL) {
.Call(`_RxODE_rxSymInvCholEnvCalculate`, obj, what, theta)
}
rxOptRep_ <- function(input) {
.Call(`_RxODE_rxOptRep_`, input)
}
#' Stack a solved object for things like ggplot
#'
#' @param Data is a RxODE object to be stacked.
#'
#' @param vars Variables to include in stacked data; By default this
#' is all the variables when vars is NULL.
#'
#' @return Stacked data with \code{value} and \code{trt}, where value is the values
#' and \code{trt} is the state and \code{lhs} variables.
#'
#' @author Matthew Fidler
rxStack <- function(Data, vars = NULL) {
.Call(`_RxODE_rxStack`, Data, vars)
}
rxRmvn_ <- function(A_, mu, sigma, ncores = 1L, isChol = FALSE) {
.Call(`_RxODE_rxRmvn_`, A_, mu, sigma, ncores, isChol)
}
rxMvnrnd <- function(n, L, l, u, mu, a = 0.4, tol = 2.05) {
.Call(`_RxODE_rxMvnrnd`, n, L, l, u, mu, a, tol)
}
rxCholperm <- function(Sig, l, u, eps = 1e-10) {
.Call(`_RxODE_rxCholperm`, Sig, l, u, eps)
}
rxGradpsi <- function(y, L, l, u) {
.Call(`_RxODE_rxGradpsi`, y, L, l, u)
}
rxNleq <- function(l, u, L) {
.Call(`_RxODE_rxNleq`, l, u, L)
}
rxMvrandn_ <- function(A_, mu, sigma, lower, upper, ncores = 1L, a = 0.4, tol = 2.05, nlTol = 1e-10, nlMaxiter = 100L) {
.Call(`_RxODE_rxMvrandn_`, A_, mu, sigma, lower, upper, ncores, a, tol, nlTol, nlMaxiter)
}
rxSeedEng <- function(ncores = 1L) {
.Call(`_RxODE_rxSeedEng`, ncores)
}
rxbinom_ <- function(n0, prob, n, ncores) {
.Call(`_RxODE_rxbinom_`, n0, prob, n, ncores)
}
rxcauchy_ <- function(location, scale, n, ncores) {
.Call(`_RxODE_rxcauchy_`, location, scale, n, ncores)
}
rxchisq_ <- function(df, n, ncores) {
.Call(`_RxODE_rxchisq_`, df, n, ncores)
}
rxexp_ <- function(rate, n, ncores) {
.Call(`_RxODE_rxexp_`, rate, n, ncores)
}
rxf_ <- function(df1, df2, n, ncores) {
.Call(`_RxODE_rxf_`, df1, df2, n, ncores)
}
rxgamma_ <- function(shape, rate, n, ncores) {
.Call(`_RxODE_rxgamma_`, shape, rate, n, ncores)
}
rxbeta_ <- function(shape1, shape2, n, ncores) {
.Call(`_RxODE_rxbeta_`, shape1, shape2, n, ncores)
}
rxgeom_ <- function(prob, n, ncores) {
.Call(`_RxODE_rxgeom_`, prob, n, ncores)
}
rxnorm_ <- function(mean, sd, n, ncores) {
.Call(`_RxODE_rxnorm_`, mean, sd, n, ncores)
}
rxpois_ <- function(lambda, n, ncores) {
.Call(`_RxODE_rxpois_`, lambda, n, ncores)
}
rxt__ <- function(df, n, ncores) {
.Call(`_RxODE_rxt__`, df, n, ncores)
}
rxunif_ <- function(low, hi, n, ncores) {
.Call(`_RxODE_rxunif_`, low, hi, n, ncores)
}
rxweibull_ <- function(shape, scale, n, ncores) {
.Call(`_RxODE_rxweibull_`, shape, scale, n, ncores)
}
rxRmvn0 <- function(A_, mu, sigma, lower, upper, ncores = 1L, isChol = FALSE, a = 0.4, tol = 2.05, nlTol = 1e-10, nlMaxiter = 100L) {
.Call(`_RxODE_rxRmvn0`, A_, mu, sigma, lower, upper, ncores, isChol, a, tol, nlTol, nlMaxiter)
}
rxRmvnSEXP <- function(nS, muS, sigmaS, lowerS, upperS, ncoresS, isCholS, keepNamesS, aS, tolS, nlTolS, nlMaxiterS) {
.Call(`_RxODE_rxRmvnSEXP`, nS, muS, sigmaS, lowerS, upperS, ncoresS, isCholS, keepNamesS, aS, tolS, nlTolS, nlMaxiterS)
}
rpp_ <- function(nS, lambdaS, gammaS, probS, t0S, tmaxS, randomOrderS) {
.Call(`_RxODE_rpp_`, nS, lambdaS, gammaS, probS, t0S, tmaxS, randomOrderS)
}
isNullZero <- function(obj) {
.Call(`_RxODE_isNullZero`, obj)
}
rxrandnV <- function(nrow, ncol) {
.Call(`_RxODE_rxrandnV`, nrow, ncol)
}
rxnormV_ <- function(mean, sd, n, ncores) {
.Call(`_RxODE_rxnormV_`, mean, sd, n, ncores)
}
# Register entry points for exported C++ functions
methods::setLoadAction(function(ns) {
.Call('_RxODE_RcppExport_registerCCallable', PACKAGE = 'RxODE')
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.