AvgDailyGain: Average daily weight gain of steers on different diets

Description Format Source Examples

Description

The AvgDailyGain data frame has 32 rows and 6 columns.

Format

This data frame contains the following columns:

Id

the animal number

Block

an ordered factor indicating the barn in which the steer was housed.

Treatment

an ordered factor with levels 0 < 10 < 20 < 30 indicating the amount of medicated feed additive added to the base ration.

adg

a numeric vector of average daily weight gains over a period of 160 days.

InitWt

a numeric vector giving the initial weight of the animal

Trt

the Treatment as a numeric variable

Source

Littel, R. C., Milliken, G. A., Stroup, W. W., and Wolfinger, R. D. (1996), SAS System for Mixed Models, SAS Institute (Data Set 5.3).

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
str(AvgDailyGain)
if (require("lattice", quietly = TRUE, character = TRUE)) {
  ## plot of adg versus Treatment by Block
  xyplot(adg ~ Treatment | Block, AvgDailyGain, type = c("g", "p", "r"),
         xlab = "Treatment (amount of feed additive)",
         ylab = "Average daily weight gain (lb.)", aspect = "xy",
         index.cond = function(x, y) coef(lm(y ~ x))[1])
}
if (require("lme4", quietly = TRUE, character = TRUE)) {
  options(contrasts = c(unordered = "contr.SAS", ordered = "contr.poly"))
  ## compare with output 5.1, p. 178
  print(fm1Adg <- lmer(adg ~ InitWt * Treatment - 1 + (1 | Block),
                         AvgDailyGain))
  print(anova(fm1Adg))   # checking significance of terms
  print(fm2Adg <- lmer(adg ~ InitWt + Treatment + (1 | Block),
                         AvgDailyGain))
  print(anova(fm2Adg))
  print(lmer(adg ~ InitWt + Treatment - 1 + (1 | Block), AvgDailyGain))
}

Example output

'data.frame':	32 obs. of  6 variables:
 $ Id       : num  1 2 3 4 5 6 7 8 9 10 ...
 $ Block    : Factor w/ 8 levels "1","2","3","4",..: 1 1 1 1 2 2 2 2 3 3 ...
 $ Treatment: Factor w/ 4 levels "0","10","20",..: 1 2 3 4 1 2 3 4 1 2 ...
 $ adg      : num  1.03 1.54 1.82 1.86 1.31 2.16 2.13 2.23 1.59 2.53 ...
 $ InitWt   : num  338 477 444 370 403 451 450 393 394 499 ...
 $ Trt      : num  0 10 20 30 0 10 20 30 0 10 ...
 - attr(*, "ginfo")=List of 7
  ..$ formula     :Class 'formula'  language adg ~ Trt | Block
  .. .. ..- attr(*, ".Environment")=<environment: R_GlobalEnv> 
  ..$ order.groups: logi TRUE
  ..$ FUN         :function (x)  
  ..$ outer       : NULL
  ..$ inner       : NULL
  ..$ labels      :List of 2
  .. ..$ Trt: chr "Level of medicated feed additive in diet"
  .. ..$ adg: chr "Average Daily Gain of steers fed for 160 days"
  ..$ units       : list()
Linear mixed model fit by REML ['lmerMod']
Formula: adg ~ InitWt * Treatment - 1 + (1 | Block)
   Data: AvgDailyGain
REML criterion at convergence: 65.3268
Random effects:
 Groups   Name        Std.Dev.
 Block    (Intercept) 0.5092  
 Residual             0.2223  
Number of obs: 32, groups:  Block, 8
Fixed Effects:
            InitWt          Treatment0         Treatment10         Treatment20  
          0.004448            0.439137            1.426119            0.479629  
       Treatment30   InitWt:Treatment0  InitWt:Treatment10  InitWt:Treatment20  
          0.200107           -0.002154           -0.003365           -0.001082  
Analysis of Variance Table
                 Df Sum Sq Mean Sq F value
InitWt            1 4.5318  4.5318 91.6823
Treatment         4 1.7425  0.4356  8.8131
InitWt:Treatment  3 0.1381  0.0460  0.9312
Linear mixed model fit by REML ['lmerMod']
Formula: adg ~ InitWt + Treatment + (1 | Block)
   Data: AvgDailyGain
REML criterion at convergence: 36.3373
Random effects:
 Groups   Name        Std.Dev.
 Block    (Intercept) 0.4908  
 Residual             0.2238  
Number of obs: 32, groups:  Block, 8
Fixed Effects:
(Intercept)       InitWt   Treatment0  Treatment10  Treatment20  
    0.80111      0.00278     -0.55207     -0.06857     -0.08813  
Analysis of Variance Table
          Df  Sum Sq Mean Sq F value
InitWt     1 0.51455 0.51455  10.275
Treatment  3 1.52670 0.50890  10.162
Linear mixed model fit by REML ['lmerMod']
Formula: adg ~ InitWt + Treatment - 1 + (1 | Block)
   Data: AvgDailyGain
REML criterion at convergence: 36.3373
Random effects:
 Groups   Name        Std.Dev.
 Block    (Intercept) 0.4908  
 Residual             0.2238  
Number of obs: 32, groups:  Block, 8
Fixed Effects:
     InitWt   Treatment0  Treatment10  Treatment20  Treatment30  
    0.00278      0.24903      0.73254      0.71298      0.80111  

SASmixed documentation built on May 1, 2019, 9:18 p.m.