Nothing
## ----knitr-options, include=FALSE---------------------------------------------
knitr::opts_chunk$set(comment = "#>",
collapse = TRUE,
eval = FALSE,
fig.align = "center")
## ----load-data----------------------------------------------------------------
# library(SDMtune)
# library(zeallot)
#
# # Prepare data
# files <- list.files(path = file.path(system.file(package = "dismo"), "ex"),
# pattern = "grd",
# full.names = TRUE)
#
# predictors <- terra::rast(files)
# data <- prepareSWD(species = "Virtual species",
# p = virtualSp$presence,
# a = virtualSp$background,
# env = predictors,
# categorical = "biome")
#
# # Split data in training, validation and testing datasets
# c(train, val, test) %<-% trainValTest(data,
# val = 0.2,
# test = 0.2,
# only_presence = TRUE,
# seed = 61516)
#
# cat("# Training : ", nrow(train@data))
# cat("\n# Validation: ", nrow(val@data))
# cat("\n# Testing : ", nrow(test@data))
#
# # Train Maxnet model with default settings
# model <- train("Maxnet",
# data = train)
## ----tune-reg-----------------------------------------------------------------
# # Define the values for the regularization multiplier
# h <- list(reg = seq(0.2, 1, 0.1))
#
# # Call the gridSearch function
# exp_1 <- gridSearch(model,
# hypers = h,
# metric = "auc",
# test = val)
## ----print-exp-1--------------------------------------------------------------
# exp_1
## ----plot-exp-1---------------------------------------------------------------
# plot(exp_1,
# title = "Experiment 1")
## ----plot-exp-1-iter----------------------------------------------------------
# plot(exp_1,
# title = "Experiment 1",
# interactive = TRUE)
## ----slot-results-------------------------------------------------------------
# exp_1@results
## ----order-results------------------------------------------------------------
# exp_1@results[order(-exp_1@results$test_AUC), ]
## ----exercise-1, eval=FALSE, class.source='exercise'--------------------------
# # Define the values for reg
# h <- list(reg = 1:4)
#
# # Call the gridSearch function
# exp_2 <- gridSearch(model,
# hypers = h,
# metric = "tss",
# test = val)
## ----exercise-2, eval=FALSE, class.source='exercise'--------------------------
# # Define the values for fc
# h <- list(fc = c("l", "lq", "lh", "lqp", "lqph", "lqpht"))
#
# # Call the gridSearch function
# exp_3 <- gridSearch(model,
# hypers = h,
# metric = "auc",
# test = val)
## ----exercise-3, eval=FALSE, class.source='exercise'--------------------------
# maxent_model <- train("Maxent",
# data = data)
#
# # Define the values for fc
# h <- list("iter" = seq(300, 1100, 200))
#
# # Call the gridSearch function
# exp_4 <- gridSearch(maxent_model,
# hypers = h,
# metric = "auc",
# test = val)
## ----get-hypers---------------------------------------------------------------
# getTunableArgs(model)
## ----exp-5, eval=FALSE--------------------------------------------------------
# h <- list(reg = seq(0.2, 2, 0.2),
# fc = c("l", "lq", "lh", "lqp", "lqph", "lqpht"))
#
# exp_5 <- gridSearch(model,
# hypers = h,
# metric = "auc",
# test = val)
## ----random-search------------------------------------------------------------
# h <- list(reg = seq(0.2, 5, 0.2),
# fc = c("l", "lq", "lh", "lp", "lqp", "lqph"))
#
# exp_6 <- randomSearch(model,
# hypers = h,
# metric = "auc",
# test = val,
# pop = 10,
# seed = 65466)
## ----sdmtune-results----------------------------------------------------------
# exp_6@results
## ----optimize-model, eval=FALSE-----------------------------------------------
# exp_7 <- optimizeModel(model,
# hypers = h,
# metric = "auc",
# test = val,
# pop = 15,
# gen = 2,
# seed = 798)
## ----merge--------------------------------------------------------------------
# # Index of the best model in the experiment
# index <- which.max(exp_6@results$test_AUC)
#
# # New train dataset containing only the selected variables
# new_train <- exp_6@models[[index]]@data
#
# # Merge only presence data
# merged_data <- mergeSWD(new_train,
# val,
# only_presence = TRUE)
## ----final-model--------------------------------------------------------------
# final_model <- train("Maxnet",
# data = merged_data,
# fc = exp_6@results[index, 1],
# reg = exp_6@results[index, 2])
## ----final-evaluation---------------------------------------------------------
# auc(final_model, test = test)
## ----cross-validation---------------------------------------------------------
# # Create the folds from the training dataset
# folds <- randomFolds(train,
# k = 4,
# only_presence = TRUE,
# seed = 25)
#
# # Train the model
# cv_model <- train("Maxent",
# data = train,
# folds = folds)
## ----randomSearch-cv----------------------------------------------------------
# h <- list(reg = seq(0.2, 5, 0.2),
# fc = c("l", "lq", "lh", "lp", "lqp", "lqph"))
#
# exp_8 <- randomSearch(cv_model,
# hypers = h,
# metric = "auc",
# pop = 10,
# seed = 65466)
## ----final-evaluation-cv------------------------------------------------------
# final_model <- combineCV(exp_8@models[[1]])
#
# auc(final_model, test = test)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.