Nothing
## ----knitr-options, include=FALSE---------------------------------------------
knitr::opts_chunk$set(comment = "#>",
collapse = TRUE,
eval = FALSE,
fig.align = "center")
## ----load-data----------------------------------------------------------------
# library(SDMtune)
# library(zeallot)
#
# # Prepare data
# files <- list.files(path = file.path(system.file(package = "dismo"), "ex"),
# pattern = "grd",
# full.names = TRUE)
# predictors <- terra::rast(files)
# data <- prepareSWD(species = "Virtual species",
# p = virtualSp$presence,
# a = virtualSp$background,
# env = predictors,
# categorical = "biome")
#
# c(train, test) %<-% trainValTest(data,
# test = 0.2,
# only_presence = TRUE,
# seed = 25)
#
# # Train model
# model <- train("Maxent",
# data = train)
#
# # Train cross validation model
# folds <- randomFolds(data,
# k = 4,
# only_presence = TRUE,
# seed = 25)
#
# cv_model <- train("Maxent",
# data = data,
# folds = folds)
## ----maxent-results-----------------------------------------------------------
# model@model@results
## ----maxent-var-importance----------------------------------------------------
# vi <- maxentVarImp(model)
# vi
## ----maxent-percent-contribution-plot-----------------------------------------
# plotVarImp(vi[, 1:2])
## ----maxent-permutation-importance-plot---------------------------------------
# plotVarImp(vi[, c(1,3)])
## ----maxnet-model-------------------------------------------------------------
# maxnet_model <- train("Maxnet",
# data = train)
## ----variable-importance------------------------------------------------------
# vi_maxnet <- varImp(maxnet_model,
# permut = 5)
#
# vi_maxnet
## ----plot-var-imp-------------------------------------------------------------
# plotVarImp(vi_maxnet)
## ----permut-exercise----------------------------------------------------------
# # Compute the permutation importance
# vi_maxent <- varImp(model,
# permut = 10)
#
# # Print it
# vi_maxent
#
# # Compare with Maxent output
# maxentVarImp(model)
## ----jk-----------------------------------------------------------------------
# jk <- doJk(maxnet_model,
# metric = "auc",
# test = test)
#
# jk
## ----plot-jk-train------------------------------------------------------------
# plotJk(jk,
# type = "train",
# ref = auc(maxnet_model))
## ----plot-jk-test-------------------------------------------------------------
# plotJk(jk,
# type = "test",
# ref = auc(maxnet_model, test = test))
## ----plot-bio1----------------------------------------------------------------
# plotResponse(maxnet_model,
# var = "bio1",
# type = "cloglog",
# only_presence = TRUE,
# marginal = FALSE,
# rug = TRUE)
## ----plot-biome---------------------------------------------------------------
# plotResponse(maxnet_model,
# var = "biome",
# type = "logistic",
# only_presence = TRUE,
# marginal = TRUE,
# fun = mean,
# color = "blue")
## ----plot-cv-response---------------------------------------------------------
# plotResponse(cv_model,
# var = "bio1",
# type = "cloglog",
# only_presence = TRUE,
# marginal = TRUE,
# fun = mean,
# rug = TRUE)
## ----report-------------------------------------------------------------------
# modelReport(maxnet_model,
# type = "cloglog",
# folder = "virtual-sp",
# test = test,
# response_curves = TRUE,
# only_presence = TRUE,
# jk = TRUE,
# env = predictors)
## ----backgrounds--------------------------------------------------------------
# set.seed(25)
# bg <- terra::spatSample(predictors,
# size = 10000,
# method = "random",
# na.rm = TRUE,
# xy = TRUE,
# values = FALSE)
#
# bg <- prepareSWD(species = "Bgs",
# a = bg,
# env = predictors,
# categorical = "biome")
## ----heat-map-----------------------------------------------------------------
# plotCor(bg,
# method = "spearman",
# cor_th = 0.7)
## ----cor-var------------------------------------------------------------------
# corVar(bg,
# method = "spearman",
# cor_th = 0.7)
## ----varSel-------------------------------------------------------------------
# selected_variables_model <- varSel(maxnet_model,
# metric = "auc",
# test = test,
# bg4cor = bg,
# method = "spearman",
# cor_th = 0.7,
# permut = 1)
## ----output-varSel------------------------------------------------------------
# selected_variables_model
## ----exercise-1---------------------------------------------------------------
# selected_variables_model <- varSel(model,
# metric = "aicc",
# bg4cor = bg,
# method = "spearman",
# cor_th = 0.7,
# env = predictors,
# use_pc = TRUE)
## ----permutation--------------------------------------------------------------
# varImp(model,
# permut = 1)
## ----reduce-var-1-------------------------------------------------------------
# cat("Testing AUC before: ", auc(maxnet_model, test = test))
#
# reduced_variables_model <- reduceVar(maxnet_model,
# th = 6,
# metric = "auc",
# test = test,
# permut = 1)
#
# cat("Testing AUC after: ", auc(reduced_variables_model, test = test))
## ----reduce-var-2-------------------------------------------------------------
# cat("Testing AUC before: ", auc(maxnet_model, test = test))
#
# reduced_variables_model <- reduceVar(maxnet_model,
# th = 15, metric = "auc",
# test = test,
# permut = 1,
# use_jk = TRUE)
#
# cat("Testing AUC after: ", auc(reduced_variables_model, test = test))
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.