Description Usage Arguments Details Value Author(s) References Examples
View source: R/unbias.eigens.R
A function called by setpath(), used to attain unbiased estimates of leading eigenvalues and to estimate the leading eigenvalues under the null hypothesis.
1 | unbias.eigens(L, g, w, minalpha = NULL)
|
L |
A vector of length two containing a leading eigenvalue from each of the two datasets. |
g |
A vector of length two containing the gamma (p/n) values from the two datasets. |
w |
The weights to assign to the two classes when estimating common leading eigenvalues under the null hypothesis. |
minalpha |
Can be used to tweak the estimation of the leading eigenvalues under the null hypothesis. If NULL, eigenvalues are truncated below at 1 + 2*sqrt(gamma). Otherwise, eigenvalues are truncated below at 1 + sqrt(gamma) + minalpha. |
Called by the setpath() function, not useful on its own.
QLcorrection |
The correction factor to remove the bias in the difference between the two eigenvalues. |
a0 |
The common eigenvalue estimated under the null hypothesis |
a |
The unbiased eigenvalue estimates from each class |
Patrick Danaher
Patrick Danaher, Debashis Paul, and Pei Wang. "Covariance-based analyses of biological pathways." Biometrika (2015)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | ## The function is currently defined as
function (L, g, w, minalpha = NULL)
{
if (length(minalpha) == 0) {
minalpha = sqrt(max(g))
}
a = c()
for (k in 1:2) {
if (L[k] < (1 + sqrt(g[k]))^2) {
a[k] = 1 + sqrt(max(g)) + minalpha
}
if (L[k] >= (1 + sqrt(g[k]))^2) {
a[k] = ((1 + L[k] - g[k]) + sqrt((1 + L[k] - g[k])^2 -
4 * L[k]))/2
}
}
a0 = sum(a * w)
a0 = max(c(a0, 1 + sqrt(g)))
QLcorrection = (g[1] - g[2]) * a0/(a0 - 1)
return(list(QLcorrection = QLcorrection, a0 = a0, a = a))
}
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.