R/mi_logreg_testing.R

Defines functions mi_logreg_testing

Documented in mi_logreg_testing

#' Testing procedures for estimation of mutual information
#' 
#' Diagnostic procedures that allows to compute the  uncertainty of estimation of mutual information by SLEMI approach. Two main procedures are implemented:
#' bootstrap, which execute estimation with using a fraction of data and overfitting test, which divides data into two parts: training and testing. Each of them
#' is repeated specified number of times to obtain a distribution of our estimators. It is recommended to call this function from mi_logreg_main.R.
#'
#' If side variables are added within the analysis (side_variables is not NULL), two additional procedures are carried out:
#' reshuffling test and reshuffling with bootstrap test, which are based on permutation of side variables values within the dataset.  
#' Additional parameters: lr_maxit and maxNWts are the same as in definition of multinom function from nnet package. An alternative
#' model formula (using formula_string arguments) should be provided if  data are not suitable for description by logistic regression
#' (recommended only for advanced users).
#'
#' @section References:
#' [1] Jetka T, Nienaltowski K, Winarski T, Blonski S, Komorowski M,  
#' Information-theoretic analysis of multivariate single-cell signaling responses using SLEMI,
#' \emph{PLoS Comput Biol}, 15(7): e1007132, 2019, https://doi.org/10.1371/journal.pcbi.1007132.
#'
#' @param data must be a data.frame object. Cannot contain NA values.
#' @param signal is a character object with names of columns of dataRaw to be treated as channel's input.
#' @param response is a character vector with names of columns of dataRaw  to be treated as channel's output
#' @param side_variables (optional) is a character vector that indicates side variables' columns of data, if NULL no side variables are included
#' @param pinput is a numeric vector with prior probabilities of the input values. Uniform distribution is assumed as default (pinput=NULL).
#' @param formula_string (optional) is a character object that includes a formula syntax to use in logistic regression model. 
#' If NULL, a standard additive model of response variables is assumed. Only for advanced users.
#' @param lr_maxit is a maximum number of iteration of fitting algorithm of logistic regression. Default is 1000.
#' @param maxNWts is a maximum acceptable number of weights in logistic regression algorithm. Default is 5000.
#' @param TestingSeed is the seed for random number generator used in testing procedures
#' @param boot_num is the number of bootstrap tests to be performed. Default is 10, but it is recommended to use at least 50 for reliable estimates.
#' @param boot_prob is the proportion of initial size of data to be used in bootstrap
#' @param testing_cores - number of cores to be used in parallel computing (via doParallel package)
#' @param sidevar_num is the number of re-shuffling tests of side variables to be performed. Default is 10, but it is recommended to use at least 50 for reliable estimates.
#' @param traintest_num is the number of overfitting tests to be performed. Default is 10, but it is recommended to use at least 50 for reliable estimates.
#' @param partition_trainfrac is the fraction of data to be used as a training dataset
#' @keywords internal
#' @return a list with elements:
#' \itemize{
#' \item output$bootstrap - bootstrap test
#' \item output$traintest - overfitting test
#' \item output$reshuffling_sideVar - (if side_variables is not NULL) re-shuffling test
#' \item output$bootstrap_Reshuffling_sideVar - (if side_variables is not NULL) re-shuffling test with a bootstrap
#' }
#' Each of the above is a list, where an element is a standard output of a single mi_logreg_algorithm run.
#' @export
#' @examples 
#' ## Compute  uncertainty of mutual information estimator using 1 core
#' ## Set boot_num and traintest_num with larger numbers for more reliable testing
#' tempdata=data_example1
#' output=mi_logreg_testing(data=tempdata,
#'                    signal = "signal",
#'                    response = "response",
#'                    testing_cores = 1,boot_num=1,traintest_num=1)
mi_logreg_testing<-function(data,signal="signal",response="response",side_variables=NULL,
                            pinput=NULL,lr_maxit=1000,MaxNWts = 5000,
                                  formula_string=NULL,
                                  TestingSeed=1234,testing_cores=1,
                                  boot_num=10,boot_prob=0.8,
                                  sidevar_num=10,
                                  traintest_num=10,partition_trainfrac=0.6){
  
  output=list()
  
  data_signal=data[[signal]]
  func_input_checks(data,signal,response,side_variables)

  set.seed(TestingSeed)
  message("Testing procedures starting with ", testing_cores, " core(s)..")

    if (testing_cores==1){  
        `%do%`<-foreach::`%do%`
        output_test1<-foreach::foreach(j=1:boot_num,
                                 .export=c("sampling_bootstrap","mi_logreg_algorithm","aux_x_log_y","func_formula_generator",
                                  "func_input_checks","func_signal_transform"),
                                 .packages=c("nnet","caret")) %do% {
                                    data_bt_samp   <- sampling_bootstrap(data,boot_prob,data_signal)
                                    bt_samp_output <- mi_logreg_algorithm(data=data_bt_samp,signal=signal,response=response,side_variables=side_variables,
                                                                           formula_string=formula_string,model_out=FALSE,lr_maxit=lr_maxit,MaxNWts =MaxNWts,
                                                                           pinput=pinput)
                                    bt_samp_output
                                 }

        if (!is.null(side_variables)){
            output_test2=foreach::foreach(j=1:sidevar_num,
                                  .export=c("sampling_shuffle","mi_logreg_algorithm","aux_x_log_y","func_formula_generator",
                                  "func_input_checks","func_signal_transform"),
                                  .packages=c("nnet","caret")) %do% {
                                    data_resamp_samp   <- sampling_shuffle(data,side_variables)
                                    bt_samp_output <- mi_logreg_algorithm(data=data_resamp_samp,signal=signal,response=response,side_variables=side_variables,
                                                                            formula_string=formula_string,model_out=FALSE,lr_maxit=lr_maxit,MaxNWts =MaxNWts,
                                                                            pinput=pinput )
                                    bt_samp_output
                                  }

            output_test4=foreach::foreach(j=1:sidevar_num,
                                  .export=c("sampling_bootstrap","sampling_shuffle","mi_logreg_algorithm","aux_x_log_y","func_formula_generator",
                                  "func_input_checks","func_signal_transform"),
                                  .packages=c("nnet","caret")) %do% {
                                    data_resamp_samp   <- sampling_shuffle(data,side_variables)
                                    data_bt_samp   <- sampling_bootstrap(data_resamp_samp,boot_prob,data_signal)
                                    bt_samp_output <- mi_logreg_algorithm(data=data_bt_samp,signal=signal,response=response,side_variables=side_variables,
                                                                          formula_string=formula_string,model_out=FALSE,lr_maxit=lr_maxit,MaxNWts =MaxNWts,
                                                                          pinput=pinput)
                                    bt_samp_output
                                  }
        }
  
        output_test3=foreach::foreach(j=1:traintest_num,
                                .export=c("sampling_partition","mi_logreg_algorithm","aux_x_log_y","func_formula_generator",
                                  "func_input_checks","func_signal_transform"),
                                .packages=c("nnet","caret")) %do% {
                                    datatraintestsamp   <- sampling_partition(data,data_signal,partition_trainfrac)
                                    bt_samp_output<- mi_logreg_algorithm(data=datatraintestsamp,signal=signal,response=response,side_variables=side_variables,
                                                                         formula_string=formula_string,model_out=FALSE,lr_maxit=lr_maxit,MaxNWts =MaxNWts,
                                                                         pinput=pinput )
                                    bt_samp_output
                                }
  
        output$bootstrap        <- output_test1
        if (!is.null(side_variables)){ output$reshuffling_sideVar  <- output_test2}
        if (!is.null(side_variables)){ output$bootstrap_Reshuffling_sideVar  <- output_test4}
        output$traintest        <- output_test3
    } else if (testing_cores>1) {

        `%dopar%`<-foreach::`%dopar%`
          
        #Bootstrap
        #message("Bootstrap starting..")
        cl=parallel::makeCluster(testing_cores)
        doParallel::registerDoParallel(cl)
        output_test1<-foreach::foreach(j=1:boot_num,
                                         .export=c("sampling_bootstrap","mi_logreg_algorithm","aux_x_log_y","func_formula_generator",
                                          "func_input_checks","func_signal_transform"),
                                         .packages=c("nnet","caret")) %dopar% {
                                             data_bt_samp   <- sampling_bootstrap(data,boot_prob,data_signal)
                                             bt_samp_output <- mi_logreg_algorithm(data=data_bt_samp,signal=signal,response=response,side_variables=side_variables,
                                                                                         formula_string=formula_string,model_out=FALSE,lr_maxit=lr_maxit,MaxNWts =MaxNWts,
                                                                                   pinput=pinput)
                                           bt_samp_output
                                         }
        # parallel::stopCluster(cl)
        #message("completed..")
          
        if (!is.null(side_variables)){
            # Resampling
            # message("Reshuffling starting..")
            #  cl=parallel::makeCluster(testing_cores)
            # doParallel::registerDoParallel(cl)
            output_test2=foreach::foreach(j=1:sidevar_num,
                                              .export=c("sampling_shuffle","mi_logreg_algorithm","aux_x_log_y","func_formula_generator",
                                              "func_input_checks","func_signal_transform"),
                                              .packages=c("nnet","caret")) %dopar% {
                                                  data_resamp_samp   <- sampling_shuffle(data,side_variables)
                                                  bt_samp_output <- mi_logreg_algorithm(data=data_resamp_samp,signal=signal,response=response,side_variables=side_variables,
                                                                                              formula_string=formula_string,model_out=FALSE,lr_maxit=lr_maxit,MaxNWts =MaxNWts,
                                                                                        pinput=pinput )
                                                bt_samp_output
                                              }
            #parallel::stopCluster(cl)
            #message("completed 1..")
                
                
            # Bootstrap&Resampling
            # cl=parallel::makeCluster(testing_cores)
            # doParallel::registerDoParallel(cl)
            output_test4=foreach::foreach(j=1:sidevar_num,
                                              .export=c("sampling_bootstrap","sampling_shuffle","mi_logreg_algorithm","aux_x_log_y","func_formula_generator",
                                              "func_input_checks","func_signal_transform"),
                                              .packages=c("nnet","caret")) %dopar% {
                                                  data_resamp_samp   <- sampling_shuffle(data,side_variables)
                                                  data_bt_samp   <- sampling_bootstrap(data_resamp_samp,boot_prob,data_signal)
                                                  bt_samp_output <- mi_logreg_algorithm(data=data_bt_samp,signal=signal,response=response,side_variables=side_variables,
                                                                                              formula_string=formula_string,model_out=FALSE,lr_maxit=lr_maxit,MaxNWts =MaxNWts,
                                                                                        pinput=pinput )
                                                bt_samp_output
                                              }
            # parallel::stopCluster(cl)
            # message("completed 2")
        }
          
        # Train-Test
        # message("Over-fitting starting..")
        # cl=parallel::makeCluster(testing_cores)
        # doParallel::registerDoParallel(cl)
        output_test3=foreach::foreach(j=1:traintest_num,
                                        .export=c("sampling_partition","mi_logreg_algorithm","aux_x_log_y","func_formula_generator",
                                          "func_input_checks","func_signal_transform"),
                                        .packages=c("nnet","caret")) %dopar% {
                                            datatraintestsamp   <- sampling_partition(data,data_signal,partition_trainfrac)
                                            bt_samp_output<- mi_logreg_algorithm(data=datatraintestsamp,signal=signal,response=response,side_variables=side_variables,
                                                                                       formula_string=formula_string,model_out=FALSE,lr_maxit=lr_maxit,MaxNWts =MaxNWts,
                                                                                 pinput=pinput )
                                          bt_samp_output
                                        }
        parallel::stopCluster(cl)
        # message("completed")
          
        output$bootstrap        <- output_test1
        if (!is.null(side_variables)){ output$reshuffling_sideVar  <- output_test2}
        if (!is.null(side_variables)){ output$bootstrap_Reshuffling_sideVar  <- output_test4}
        output$traintest        <- output_test3
    }
 
    output
}

Try the SLEMI package in your browser

Any scripts or data that you put into this service are public.

SLEMI documentation built on Feb. 22, 2021, 5:11 p.m.