Nothing
#' @title Borderline Synthetic Minority Oversampling Technique
#'
#' @description \code{BLSMOTE()} applies BLSMOTE (Borderline-SMOTE) which is a
#' variation of the SMOTE algorithm that generates synthetic samples only in the
#' vicinity of the borderline instances in imbalanced datasets.
#'
#' @param x feature matrix or data.frame.
#' @param y a factor class variable with two classes.
#' @param k1 number of neighbors to link. Default is 5.
#' @param k2 number of neighbors to determine safe levels. Default is 5.
#' @param type "type1" or "type2". Default is "type1".
#' @param n_needed vector of desired number of synthetic samples for each class.
#' A vector of integers for each class. Default is NULL meaning full balance.
#'
#' @details
#' BLSMOTE works by focusing on the instances that are near the decision
#' boundary between the minority and majority classes, known as borderline
#' instances. These instances are more informative and potentially more
#' challenging for classification, and thus generating synthetic samples in
#' their vicinity can be more effective than generating them randomly.
#'
#' Can work with classes more than 2.
#'
#' @return a list with resampled dataset.
#' \item{x_new}{Resampled feature matrix.}
#' \item{y_new}{Resampled target variable.}
#' \item{x_syn}{Generated synthetic data.}
#'
#' @author Fatih Saglam, saglamf89@gmail.com
#'
#' @importFrom FNN knnx.index
#' @importFrom stats rnorm
#' @importFrom stats sd
#'
#' @references
#' Han, H., Wang, W. Y., & Mao, B. H. (2005). Borderline-SMOTE: a new
#' over-sampling method in imbalanced data sets learning. In Advances in
#' Intelligent Computing: International Conference on Intelligent Computing,
#' ICIC 2005, Hefei, China, August 23-26, 2005, Proceedings, Part I 1
#' (pp. 878-887). Springer Berlin Heidelberg.
#'
#' @examples
#'
#' set.seed(1)
#' x <- rbind(matrix(rnorm(2000, 3, 1), ncol = 2, nrow = 1000),
#' matrix(rnorm(100, 5, 1), ncol = 2, nrow = 50))
#' y <- as.factor(c(rep("negative", 1000), rep("positive", 50)))
#'
#' plot(x, col = y)
#'
#' # resampling
#' m <- BLSMOTE(x = x, y = y, k1 = 5, k2 = 5)
#'
#' plot(m$x_new, col = m$y_new)
#'
#' @rdname BLSMOTE
#' @export
BLSMOTE <- function(x, y, k1 = 5, k2 = 5, type = "type1", n_needed = NULL) {
if (!is.data.frame(x) & !is.matrix(x)) {
stop("x must be a matrix or dataframe")
}
if (is.data.frame(x)) {
x <- as.matrix(x)
}
if (!is.factor(y)) {
stop("y must be a factor")
}
if (!is.numeric(k1)) {
stop("k1 must be numeric")
}
if (k1 < 1) {
stop("k1 must be positive")
}
if (!is.numeric(k2)) {
stop("k2 must be numeric")
}
if (k2 < 1) {
stop("k2 must be positive")
}
var_names <- colnames(x)
x <- as.matrix(x)
p <- ncol(x)
class_names <- as.character(levels(y))
n_classes <- sapply(class_names, function(m) sum(y == m))
k_class <- length(class_names)
x_classes <- lapply(class_names, function(m) x[y == m,, drop = FALSE])
if (is.null(n_needed)) {
n_needed <- max(n_classes) - n_classes
}
if (length(n_needed) != k_class) {
stop("n_needed must be an integer vector matching the number of classes.")
}
x_syn_list <- list()
for (j in 1:k_class) {
x_syn_list[[j]] <- matrix(nrow = 0, ncol = p)
if (n_needed[j] == 0) {
next
}
n_main <- n_classes[j]
n_other <- sum(n_classes[-j])
x_main <- x_classes[[j]]
i_danger <- c()
while(length(i_danger) < 2) {
nn_main2all <- RANN::nn2(data = x, query = x_main, k = k2 + 1)$nn.idx[,-1]
count_main <- rowSums(matrix(y[nn_main2all] == class_names[j], nrow = nrow(nn_main2all), ncol = ncol(nn_main2all)))
count_other <- k2 - count_main
nn_main2all_classcounts <- cbind(
count_main,
count_other
)
safe_levels <- nn_main2all_classcounts[,1]/k2
i_danger <- which(safe_levels <= 0.5 & safe_levels > 0)
i_safe <- which(safe_levels > 0.5)
i_outcast <- which(safe_levels == 0)
n_danger <- length(i_danger)
if (n_danger < 2) {
k2 <- k2 + 1
}
}
x_main_danger <- x_main[i_danger,,drop = FALSE]
k1 <- pmin(k1, n_danger - 1)
if (type == "type1") {
if (k1 >= n_danger) {
stop("k1 exceeded the number of dangerous samples.")
}
nn_danger2danger <- FNN::knnx.index(data = x_main_danger, query = x_main_danger, k = k1 + 1)[,-1,drop = FALSE]
while (nrow(x_syn_list[[j]]) < n_needed[j]) {
i_main <- sample(1:nrow(x_main_danger), 1)
i_k <- sample(1:k1, 1, replace = TRUE)
r <- runif(1)
x_main_danger_i <- x_main_danger[i_main,]
x_main_danger_neighbour <- x_main_danger[nn_danger2danger[i_main, i_k],, drop = FALSE]
x_syn_step <- x_main_danger_i + (x_main_danger_neighbour - x_main_danger_i)*r
x_syn_list[[j]] <- rbind(x_syn_list[[j]], x_syn_step)
}
}
if (type == "type2") {
nn_danger2all <- RANN::nn2(data = x, query = x_main_danger, k = k1 + 1)$nn.idx[,-1,drop = FALSE]
while (nrow(x_syn_list[[j]]) < n_needed[j]) {
i_main <- sample(1:nrow(x_main_danger), 1)
i_k <- sample(1:k1, 1, replace = TRUE)
x_main_danger_i <- x_main_danger[i_main,]
i_nn_danger2all_i <- nn_danger2all[i_main, i_k]
r <- ifelse(y[i_nn_danger2all_i] == class_names[j], runif(1), runif(1, 0, 0.5))
x_main_danger_neighbour <- x[i_nn_danger2all_i, , drop = FALSE]
x_syn_step <- x_main_danger_i + (x_main_danger_neighbour - x_main_danger_i)*r
x_syn_list[[j]] <- rbind(x_syn_list[[j]], x_syn_step)
}
}
}
x_syn <- do.call(rbind, x_syn_list)
y_syn <- factor(unlist(sapply(1:k_class, function(m) rep(class_names[m], n_needed[m]))), levels = class_names, labels = class_names)
x_new <- rbind(x, x_syn)
y_new <- c(y, y_syn)
colnames(x_new) <- var_names
return(list(
x_new = x_new,
y_new = y_new,
x_syn = x_syn,
y_syn = y_syn
))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.