R/SLSMOTE.R

Defines functions SLSMOTE

Documented in SLSMOTE

#' @title  Safe-level Synthetic Minority Oversampling Technique
#'
#' @description \code{SLSMOTE()} generates synthetic samples by considering a
#' safe level of the nearest minority class examples.
#'
#' @param x feature matrix or data.frame.
#' @param y a factor class variable with two classes.
#' @param k1 number of neighbors to link. Default is 5.
#' @param k2 number of neighbors to determine safe levels. Default is 5.
#'
#' @details
#' SLSMOTE uses the safe-level distance metric to identify the minority class
#' samples that are safe to oversample. Safe-level distance measures the
#' distance between a minority class sample and its k-nearest minority class
#' neighbors. A sample is considered safe to oversample if its safe-level is
#' greater than a threshold. The safe-level of a sample is the ratio of minority
#' class samples among its k-nearest neighbors.
#'
#' In SLSMOTE, the oversampling process only applies to the safe minority class
#' samples, which avoids the generation of noisy samples that can lead to
#' overfitting. To generate synthetic samples, SLSMOTE randomly selects a
#' minority class sample and finds its k-nearest minority class neighbors.
#' Then, a random minority class neighbor is selected, and a synthetic sample
#' is generated by adding a random proportion of the difference between the
#' selected sample and its neighbor to the selected sample.
#'
#' Note: Much faster than \code{smotefamily::SLS()}.
#'
#' @return a list with resampled dataset.
#'  \item{x_new}{Resampled feature matrix.}
#'  \item{y_new}{Resampled target variable.}
#'  \item{x_syn}{Generated synthetic data.}
#'  \item{C}{Number of synthetic samples for each positive class samples.}
#'
#' @author Fatih Saglam, saglamf89@gmail.com
#'
#' @importFrom  FNN knnx.index
#' @importFrom  stats rnorm
#' @importFrom  stats sd
#'
#' @references
#' Bunkhumpornpat, C., Sinapiromsaran, K., & Lursinsap, C. (2009).
#' Safe-level-smote: Safe-level-synthetic minority over-sampling technique for
#' handling the class imbalanced problem. In Advances in Knowledge Discovery
#' and Data Mining: 13th Pacific-Asia Conference, PAKDD 2009 Bangkok, Thailand,
#' April 27-30, 2009 Proceedings 13 (pp. 475-482). Springer Berlin Heidelberg.
#'
#' @examples
#'
#' set.seed(1)
#' x <- rbind(matrix(rnorm(2000, 3, 1), ncol = 2, nrow = 1000),
#'            matrix(rnorm(100, 5, 1), ncol = 2, nrow = 50))
#' y <- as.factor(c(rep("negative", 1000), rep("positive", 50)))
#'
#' plot(x, col = y)
#'
#' # resampling
#' m <- SLSMOTE(x = x, y = y, k1 = 5, k2 = 5)
#'
#' plot(m$x_new, col = m$y_new)
#'
#' @rdname SLSMOTE
#' @export

SLSMOTE <- function(x, y, k1 = 5, k2 = 5) {

  if (!is.data.frame(x) & !is.matrix(x)) {
    stop("x must be a matrix or dataframe")
  }

  if (is.data.frame(x)) {
    x <- as.matrix(x)
  }

  if (!is.factor(y)) {
    stop("y must be a factor")
  }

  if (!is.numeric(k1)) {
    stop("k1 must be numeric")
  }

  if (k1 < 1) {
    stop("k1 must be positive")
  }

  if (!is.numeric(k2)) {
    stop("k2 must be numeric")
  }

  if (k2 < 1) {
    stop("k2 must be positive")
  }

  var_names <- colnames(x)
  x <- as.matrix(x)
  p <- ncol(x)

  class_names <- as.character(unique(y))
  class_pos <- names(which.min(table(y)))
  class_neg <- class_names[class_names != class_pos]

  x_pos <- x[y == class_pos,,drop = FALSE]
  x_neg <- x[y == class_neg,,drop = FALSE]

  n_pos <- nrow(x_pos)
  n_neg <- nrow(x_neg)

  x <- rbind(x_pos, x_neg)

  nn_pos2all <- FNN::knnx.index(data = x, query = x_pos, k = k2 + 1)[,-1]
  nn_pos2pos <- FNN::knnx.index(data = x_pos, query = x_pos, k = k1 + 1)[,-1]
  nn_pos2all_classcounts <- cbind(
    rowSums(nn_pos2all <= n_pos),
    rowSums(nn_pos2all > n_pos)
  )

  safe_levels <- nn_pos2all_classcounts[,1]

  i_safe <- which(safe_levels > 0)

  x_pos_safe <- x_pos[i_safe,,drop = FALSE]

  n_safe <- nrow(x_pos_safe)

  n_syn <- (n_neg - n_pos)
  C <- rep(0, n_pos)
  C[i_safe] <- rep(ceiling(n_syn/n_safe) - 1, n_safe)

  n_diff <- (n_syn - sum(C))
  ii <- sample(1:n_safe, size = abs(n_diff))
  C[i_safe][ii] <- C[i_safe][ii]  + n_diff/abs(n_diff)

  x_syn <- matrix(nrow = 0, ncol = p)

  for (i in 1:n_pos) {
    if (safe_levels[i] > 0 & C[i] > 0) {
      i_k <- sample(1:k1, C[i], replace = TRUE)
      i_nn_pos2pos <- nn_pos2pos[i, i_k]
      k_safe_levels <- safe_levels[i_nn_pos2pos]

      r <- rep(0, C[i])
      for (j in 1:C[i]) {
        if (k_safe_levels[j] == 0) {
          r[j] <- 0
        } else if (k_safe_levels[j] == safe_levels[i]) {
          r[j] <- runif(1, 0, 1)
        } else if (k_safe_levels[j] < safe_levels[i]) {
          r[j] <- runif(1, 0, k_safe_levels[j]/safe_levels[i])
        } else {
          r[j] <- runif(1, 1 - safe_levels[i]/k_safe_levels[j], 1)
        }
      }

      x_pos_step <- x_pos[rep(i, C[i]),,drop = FALSE]
      x_pos_k <- x_pos[i_nn_pos2pos,,drop = FALSE]
      x_syn_step <- x_pos_step + (x_pos_k - x_pos_step)*r
      x_syn <- rbind(x_syn, x_syn_step)
    }
  }

  x_new <- rbind(
    x_syn,
    x_pos,
    x_neg
  )
  y_new <- c(
    rep(class_pos, n_syn + n_pos),
    rep(class_neg, n_neg)
  )
  y_new <- factor(y_new, levels = levels(y), labels = levels(y))
  colnames(x_new) <- var_names

  return(list(
    x_new = x_new,
    y_new = y_new,
    x_syn = x_new[1:n_syn,,drop = FALSE],
    C = C
  ))


}

Try the SMOTEWB package in your browser

Any scripts or data that you put into this service are public.

SMOTEWB documentation built on May 29, 2024, 11:15 a.m.