Nothing
#' @title Synthetic Minority Oversampling Technique (SMOTE)
#'
#' @description Resampling with SMOTE.
#'
#' @param x feature matrix.
#' @param y a factor class variable with two classes.
#' @param k number of neighbors. Default is 5.
#'
#' @details
#' SMOTE (Chawla et al., 2002) is an oversampling method which creates links
#' between positive samples and nearest neighbors and generates synthetic
#' samples along that link.
#'
#' It is well known that SMOTE is sensitive to noisy data. It may create more
#' noise.
#'
#' Can work with classes more than 2.
#'
#' Note: Much faster than \code{smotefamily::SMOTE()}.
#'
#' @return a list with resampled dataset.
#' \item{x_new}{Resampled feature matrix.}
#' \item{y_new}{Resampled target variable.}
#' \item{x_syn}{Generated synthetic feature data.}
#' \item{y_syn}{Generated synthetic label data.}
#'
#' @author Fatih Saglam, saglamf89@gmail.com
#'
#' @importFrom FNN get.knnx
#' @importFrom stats runif
#' @importFrom stats sd
#'
#' @references
#' Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE:
#' synthetic minority over-sampling technique. Journal of artificial
#' intelligence research, 16, 321-357.
#'
#' @examples
#'
#' set.seed(1)
#' x <- rbind(matrix(rnorm(2000, 3, 1), ncol = 2, nrow = 1000),
#' matrix(rnorm(100, 5, 1), ncol = 2, nrow = 50))
#' y <- as.factor(c(rep("negative", 1000), rep("positive", 50)))
#'
#' plot(x, col = y)
#'
#' # resampling
#' m <- SMOTE(x = x, y = y, k = 7)
#'
#' plot(m$x_new, col = m$y_new)
#'
#' @rdname SMOTE
#' @export
SMOTE <- function(x, y, k = 5) {
if (!is.data.frame(x) & !is.matrix(x)) {
stop("x must be a matrix or dataframe")
}
if (is.data.frame(x)) {
x <- as.matrix(x)
}
if (!is.factor(y)) {
stop("y must be a factor")
}
if (!is.numeric(k)) {
stop("k must be numeric")
}
if (k < 1) {
stop("k must be positive")
}
var_names <- colnames(x)
x <- as.matrix(x)
p <- ncol(x)
n <- nrow(x)
class_names <- levels(y)
n_classes <- sapply(class_names, function(m) sum(y == m))
k_class <- length(class_names)
n_classes_max <- max(n_classes)
n_needed <- n_classes_max - n_classes
x_classes <- lapply(class_names, function(m) x[y == m,, drop = FALSE])
x_syn_list <- list()
for (i in 1:k_class) {
counter <- 0
NN_main2main <- FNN::get.knnx(data = x_classes[[i]], query = x_classes[[i]], k = k + 1)$nn.index[,-1]
x_main <- x_classes[[i]]
x_syn_list[[i]] <- matrix(data = NA, nrow = 0, ncol = p)
while (TRUE) {
if (counter == n_needed[i]) {
break
}
counter <- counter + 1
i_sample <- sample(1:n_classes[i], size = 1)
x_main_selected <- x_main[i_sample,,drop = FALSE]
x_target <- x_main[sample(NN_main2main[i_sample,], size = 1),,drop = FALSE]
r <- runif(1)
x_syn_list[[i]] <- rbind(x_syn_list[[i]], x_main_selected + r*(x_target - x_main_selected))
}
}
x_syn <- do.call(rbind, x_syn_list)
y_syn <- factor(unlist(sapply(1:k_class, function(m) rep(class_names[m], n_needed[m]))), levels = class_names, labels = class_names)
x_new <- rbind(x, x_syn)
y_new <- c(y, y_syn)
colnames(x_new) <- var_names
return(list(
x_new = x_new,
y_new = y_new,
x_syn = x_syn,
y_syn = y_syn
))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.