Nothing
#' @title SMOTE with boosting (SMOTEWB)
#'
#' @description Resampling with SMOTE with boosting.
#'
#' @param x feature matrix.
#' @param y a factor class variable with two classes.
#' @param n_weak_classifier number of weak classifiers for boosting.
#' @param class_weights numeric vector of length two. First number is for
#' positive class, and second is for negative. Higher the relative weight,
#' lesser noises for that class. By default, \eqn{2\times n_{neg}/n} for
#' positive and \eqn{2\times n_{pos}/n} for negative class.
#' @param k_max to increase maximum number of neighbors. Default is
#' \code{ceiling(n_neg/n_pos)}.
#' @param ... additional inputs for ada::ada().
#'
#' @details
#' SMOTEWB (Saglam & Cengiz, 2022) is a SMOTE-based oversampling method which
#' can handle noisy data and adaptively decides the appropriate number of neighbors
#' to link during resampling with SMOTE.
#'
#' Trained model based on this method gives significantly better Matthew
#' Correlation Coefficient scores compared to others.
#'
#' @return a list with resampled dataset.
#' \item{x_new}{Resampled feature matrix.}
#' \item{y_new}{Resampled target variable.}
#' \item{x_syn}{Generated synthetic data.}
#' \item{w}{Boosting weights for original dataset.}
#' \item{k}{Number of nearest neighbors for positive class samples.}
#' \item{C}{Number of synthetic samples for each positive class samples.}
#'
#' @author Fatih Saglam, saglamf89@gmail.com
#'
#' @importFrom FNN knnx.index
#' @importFrom stats runif
#' @importFrom stats sd
#'
#' @references
#' Sağlam, F., & Cengiz, M. A. (2022). A novel SMOTE-based resampling technique
#' trough noise detection and the boosting procedure. Expert Systems with
#' Applications, 200, 117023.
#'
#' Can work with 2 classes only yet.
#' @examples
#'
#' set.seed(1)
#' x <- rbind(matrix(rnorm(2000, 3, 1), ncol = 2, nrow = 1000),
#' matrix(rnorm(100, 5, 1), ncol = 2, nrow = 50))
#' y <- as.factor(c(rep("negative", 1000), rep("positive", 50)))
#'
#' plot(x, col = y)
#'
#' # resampling
#' m <- SMOTEWB(x = x, y = y, n_weak_classifier = 150)
#'
#' plot(m$x_new, col = m$y_new)
#'
#'
#' @rdname SMOTEWB
#' @export
SMOTEWB <- function(
x,
y,
n_weak_classifier = 100,
class_weights = NULL,
k_max = NULL,
...) {
if (!is.data.frame(x) & !is.matrix(x)) {
stop("x must be a matrix or dataframe")
}
if (is.data.frame(x)) {
x <- as.matrix(x)
}
if (!is.factor(y)) {
stop("y must be a factor")
}
# var_names <- colnames(x)
# x <- as.matrix(x)
# p <- ncol(x)
# n <- nrow(x)
#
# class_names <- levels(y)
# n_classes <- sapply(class_names, function(m) sum(y == m))
# k_class <- length(class_names)
# n_classes_max <- max(n_classes)
# n_needed <- n_classes_max - n_classes
# x_classes <- lapply(class_names, function(m) x[y == m,, drop = FALSE])
#
# w <- boosted_weights(x = x, y = y, n_iter = n_weak_classifier)
# w_classes <- lapply(class_names, function(m) w[y == class_names])
#
# if (is.null(class_weights)) {
# wclass <- n/n_classes
# } else {
# wclass <- class_weights
# }
#
# treshs <- (1/n)*w_class
# scl <- sum(treshs*n_classes)
# treshs <- treshs(scl)
#
# nl <- sapply(1:k_class, function(m) {
# ifelse(w_classes[[m]] > treshs[m], "noise", "notnoise")
# })
#
# nl_classes <- lapply(class_names, function(m) nl[y == class_names])
#
# n_noise_classes <- lapply(nl_classes, function(m) sum(m == "noise"))
# n_notnoise_classes <- lapply(nl_classes, function(m) sum(m == "notnoise"))
#
# x_classes_noise <- lapply(1:k_class, function(m) {
# x_classes[[m]][nl_classes[[m]] == "noise",,drop = FALSE]
# })
# x_classes_notnoise <- lapply(1:k_class, function(m) {
# x_classes[[m]][nl_classes[[m]] == "notnoise",,drop = FALSE]
# })
#
#
# x_syn_list <- list()
#
# for (i in 1:k_class) {
# counter <- 0
# x_main <- x_classes[[i]]
#
# NN_main2main <- FNN::get.knnx(data = x_classes[[i]], query = x_classes[[i]], k = k + 1)$nn.index[,-1]
#
# x_syn_list[[i]] <- matrix(data = NA, nrow = 0, ncol = p)
#
# while (TRUE) {
# if (counter == n_needed[i]) {
# break
# }
# counter <- counter + 1
#
# i_sample <- sample(1:n_classes[i], size = 1)
# x_main_selected <- x_main[i_sample,,drop = FALSE]
# x_target <- x_main[sample(NN_main2main[i_sample,], size = 1),,drop = FALSE]
# r <- runif(1)
#
# x_syn_list[[i]] <- rbind(x_syn_list[[i]], x_main_selected + r*(x_target - x_main_selected))
# }
# }
#
var_names <- colnames(x)
x <- as.matrix(x)
n <- length(y)
p <- ncol(x)
class_names <- as.character(unique(y))
class_pos <- names(which.min(table(y)))
class_neg <- class_names[class_names != class_pos]
x_pos <- x[y == class_pos,,drop = FALSE]
x_neg <- x[y == class_neg,,drop = FALSE]
n_pos <- nrow(x_pos)
n_neg <- nrow(x_neg)
imb_ratio <- n_neg/n_pos
w <- boosted_weights(x = x, y = y, n_iter = n_weak_classifier)
w_pos <- w[y == class_pos]
w_neg <- w[y == class_neg]
if (is.null(class_weights)) {
wclass_pos <- n/n_pos*0.5
wclass_neg <- n/n_neg*0.5
} else {
wclass_pos <- class_weights[1]
wclass_neg <- class_weights[2]
}
T_pos <- (1/n)*wclass_pos
T_neg <- (1/n)*wclass_neg
scl <- T_pos*n_pos + T_neg*n_neg
T_pos <- T_pos/scl
T_neg <- T_neg/scl
nl_neg <- ifelse(w_neg > T_neg, "noise", "notnoise")
nl_pos <- ifelse(w_pos > T_pos, "noise", "notnoise")
n_neg_noise <- sum(nl_neg == "noise")
n_pos_noise <- sum(nl_pos == "noise")
n_neg_notnoise <- sum(nl_neg == "notnoise")
n_pos_notnoise <- sum(nl_pos == "notnoise")
x_neg_noise <- x_neg[nl_neg == "noise",,drop = FALSE]
x_pos_noise <- x_pos[nl_pos == "noise",,drop = FALSE]
x_neg_notnoise <- x_neg[nl_neg == "notnoise",,drop = FALSE]
x_pos_notnoise <- x_pos[nl_pos == "notnoise",,drop = FALSE]
if (is.null(k_max)) {
k_max <- ceiling(imb_ratio)
}
x_notnoise <- rbind(x_pos_notnoise, x_neg_notnoise)
y_notnoise <- c(rep(class_pos, n_pos_notnoise),
rep(class_neg, n_neg_notnoise))
k_max <- min(k_max, n_pos - 2)
NN <- FNN::knnx.index(data = x_notnoise, query = x_pos, k = k_max + 1)
NN_temp <- matrix(data = NA, nrow = n_pos, ncol = k_max)
NN_temp[nl_pos == "noise", ] <- NN[nl_pos == "noise", -(k_max + 1)]
NN_temp[nl_pos == "notnoise", ] <- NN[nl_pos == "notnoise", -1]
NN <- NN_temp
k <- c()
fl <- c()
for (i in 1:n_pos) {
cls <- y_notnoise[NN[i,]]
if (all(cls == class_pos)) {
k[i] <- k_max
} else {
k[i] <- which(cls == class_neg)[1] - 1
}
if (k[i] == 0 & nl_pos[i] == "noise") {
fl[i] <- "bad"
}
if (k[i] == 0 & nl_pos[i] == "notnoise") {
fl[i] <- "lonely"
}
if (k[i] > 0) {
fl[i] <- "good"
}
}
n_syn <- (n_neg - n_pos)
C <- numeric(n_pos)
n_good_and_lonely <- sum((fl == "good") + (fl == "lonely"))
for (i in 1:n_pos) {
if (fl[i] == "good" | fl[i] == "lonely") {
C[i] <- ceiling(n_syn/n_good_and_lonely)
}
}
n_diff <- (n_syn - sum(C))
ii <- sample(which(fl == "good" | fl == "lonely"), size = abs(n_diff))
C[ii] <- C[ii] + n_diff/abs(n_diff)
x_syn <- matrix(nrow = 0, ncol = p)
for (i in 1:n_pos) {
if (fl[i] == "lonely") {
i_step <- rep(i, C[i])
x_syn_step <- x_pos[i_step,]
x_syn <- rbind(x_syn, x_syn_step)
}
if (fl[i] == "good") {
if (C[i] == 0) {
next
}
NN_i <- NN[i,1:k[i]]
i_k <- sample(1:k[i], C[i], replace = TRUE)
lambda <- runif(C[i])
kk <- x_notnoise[NN_i,,drop = FALSE]
kk <- kk[i_k,]
x_pos_i_temp <- x_pos[rep(i, C[i]),,drop = FALSE]
x_syn_step <- x_pos_i_temp + (kk - x_pos_i_temp)*lambda
x_syn <- rbind(x_syn, x_syn_step)
}
}
x_new <- rbind(
x_syn,
x_pos,
x_neg
)
y_new <- c(
rep(class_pos, n_syn + n_pos),
rep(class_neg, n_neg)
)
y_new <- factor(y_new, levels = levels(y), labels = levels(y))
colnames(x_new) <- var_names
return(list(
x_new = x_new,
y_new = y_new,
x_syn = x_new[1:n_syn,, drop = FALSE],
w = w,
k = k,
C = C
))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.