View source: R/process-plate.R
| process_plate | R Documentation |
Processes a Luminex plate and computes normalised values using the specified
normalisation_type. Depending on the chosen method, the function performs
blank adjustment, fits models, and extracts values for test samples.
Optionally, the results can be saved as a CSV file.
process_plate(
plate,
filename = NULL,
output_dir = "normalised_data",
write_output = TRUE,
normalisation_type = "RAU",
data_type = "Median",
sample_type_filter = "ALL",
blank_adjustment = FALSE,
verbose = TRUE,
reference_dilution = 1/400,
...
)
plate |
A Plate object containing raw or processed Luminex data. |
filename |
( |
output_dir |
( |
write_output |
( |
normalisation_type |
(
|
data_type |
( |
sample_type_filter |
( |
blank_adjustment |
( |
verbose |
( |
reference_dilution |
( |
... |
Additional arguments passed to the model fitting function |
Supported normalisation types:
RAU (Relative Antibody Units):
Requires model fitting. Produces estimates using a standard curve.
See create_standard_curve_model_analyte for details.
nMFI (Normalised Median Fluorescence Intensity):
Requires a reference dilution. See get_nmfi.
MFI (Blank-adjusted Median Fluorescence Intensity): Returns raw MFI values (adjusted for blanks, if requested).
A data frame of computed values, with test samples as rows and analytes as columns.
Optionally perform blank adjustment.
Fit a model for each analyte using standard curve data.
Predict RAU values for test samples.
Aggregate and optionally save results.
Optionally perform blank adjustment.
Compute normalised MFI using the reference_dilution.
Aggregate and optionally save results.
Optionally perform blank adjustment.
Return adjusted MFI values.
create_standard_curve_model_analyte, get_nmfi
plate_file <- system.file("extdata", "CovidOISExPONTENT_CO_reduced.csv", package = "SerolyzeR")
layout_file <- system.file("extdata", "CovidOISExPONTENT_CO_layout.xlsx", package = "SerolyzeR")
plate <- read_luminex_data(plate_file, layout_file, verbose = FALSE)
example_dir <- tempdir(check = TRUE)
# Process using default settings (RAU normalisation)
process_plate(plate, output_dir = example_dir)
# Use a custom filename and skip blank adjustment
process_plate(plate,
filename = "no_blank.csv",
output_dir = example_dir,
blank_adjustment = FALSE
)
# Use nMFI normalisation with reference dilution
process_plate(plate,
normalisation_type = "nMFI",
reference_dilution = "1/400",
output_dir = example_dir
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.