View source: R/SieveSGDFunction.R
| sieve.sgd.predict | R Documentation | 
Sieve-SGD makes prediction with new predictors.
sieve.sgd.predict(sieve.model, X)
| sieve.model | a list initiated using sieve.sgd.preprocess and sieve.sgd.solver. Check the documentation of sieve.sgd.preprocess for more information. | 
| X | a data frame containing prediction features/ independent variables. | 
sieve.sgd.predict will update the given sieve.model input list.
| inf.list | In each entry of the list inf.list, the array prdy is the predicted outcome under the given hyperparameter combination. | 
frho.para <- xdim <- 1 ##predictor dimension
frho <- 'additive' ###truth is a sum of absolute functions 
type <- 'cosine' ###use cosine functions as the basis functions
#generate training data
TrainData <- GenSamples(s.size = 1e3, xdim = xdim, 
                                frho.para = frho.para, 
                                frho = frho, noise.para = 0.1)
#preprocess the model
sieve.model <- sieve.sgd.preprocess(X = TrainData[,2:(xdim+1)], 
                                    type = type,
                                    s = c(1,2),
                                    r0 = c(0.5, 2, 4),
                                    J = c(1, 4, 8))
##train the model
sieve.model <- sieve.sgd.solver(sieve.model = sieve.model, 
                                X = TrainData[,2:(xdim+1)], 
                                Y  = TrainData[,1])
##generate new data
NewData <- GenSamples(s.size = 5e2, xdim = xdim, 
                      frho.para = frho.para, 
                      frho = frho, noise.para = 0.1)
sieve.model <- sieve.sgd.predict(sieve.model, X = NewData[, 2:(xdim+1)])
plot(NewData[, 2:(xdim+1)], sieve.model$best_model$prdy)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.