Description Usage Arguments Value References See Also
View source: R/intercorr_cat_pois.R
This function calculates a k_cat x k_pois
intermediate matrix of correlations for the k_cat
ordinal (r >=
2 categories) and k_pois
Poisson variables required to produce the target correlations in rho_cat_pois
. It extends the method of Amatya & Demirtas (2015, doi: 10.1080/00949655.2014.953534)
to ordinal - Poisson pairs and allows for regular or zero-inflated Poisson variables.
Here, the intermediate correlation between Z1 and Z2 (where Z1 is the standard normal variable discretized to produce an
ordinal variable Y1, and Z2 is the standard normal variable used to generate a Poisson variable via the inverse CDF method) is
calculated by dividing the target correlation by a correction factor. The correction factor is the product of the
upper Frechet-Hoeffding bound on the correlation between a Poisson variable and the normal variable used to generate it
and a simulated GSC upper bound on the correlation between an ordinal variable and the normal variable used to generate it (see
Demirtas & Hedeker, 2011, doi: 10.1198/tast.2011.10090). The function is used in intercorr
and
corrvar
. This function would not ordinarily be called by the user.
1 2 | intercorr_cat_pois(rho_cat_pois = NULL, marginal = list(), lam = NULL,
p_zip = 0, nrand = 100000, seed = 1234)
|
rho_cat_pois |
a |
marginal |
a list of length equal to |
lam |
a vector of lambda (mean > 0) constants for the regular and zero-inflated Poisson variables (see |
p_zip |
a vector of probabilities of structural zeros (not including zeros from the Poisson distribution) for the
zero-inflated Poisson variables (see |
nrand |
the number of random numbers to generate in calculating the bound (default = 10000) |
seed |
the seed used in random number generation (default = 1234) |
a k_cat x k_pois
matrix whose rows represent the k_cat
ordinal variables and columns represent the k_pois
Poisson variables
Amatya A & Demirtas H (2015). Simultaneous generation of multivariate mixed data with Poisson and normal marginals. Journal of Statistical Computation and Simulation, 85(15):3129-39. doi: 10.1080/00949655.2014.953534.
Demirtas H & Hedeker D (2011). A practical way for computing approximate lower and upper correlation bounds. American Statistician, 65(2):104-109. doi: 10.1198/tast.2011.10090.
Frechet M (1951). Sur les tableaux de correlation dont les marges sont donnees. Ann. l'Univ. Lyon SectA, 14:53-77.
Hoeffding W. Scale-invariant correlation theory. In: Fisher NI, Sen PK, editors. The collected works of Wassily Hoeffding. New York: Springer-Verlag; 1994. p. 57-107.
Yahav I & Shmueli G (2012). On Generating Multivariate Poisson Data in Management Science Applications. Applied Stochastic Models in Business and Industry, 28(1):91-102. doi: 10.1002/asmb.901.
Yee TW (2018). VGAM: Vector Generalized Linear and Additive Models. R package version 1.0-5. https://CRAN.R-project.org/package=VGAM.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.