plot_simpdf_theory: Plot Simulated Probability Density Function and Target PDF by...

Description Usage Arguments Value References See Also Examples

View source: R/plot_simpdf_theory.R

Description

This plots the PDF of simulated continuous or count (regular or zero-inflated, Poisson or Negative Binomial) data and overlays the target PDF (if overlay = TRUE), which is specified by distribution name (plus up to 4 parameters) or PDF function fx (plus support bounds). If a continuous target distribution is provided (cont_var = TRUE), the simulated data y is scaled and then transformed (i.e. y = sigma * scale(y) + mu) so that it has the same mean (mu) and variance (sigma^2) as the target distribution. The PDF's of continuous variables are shown as lines (using geom_density and ggplot2::geom_line). It works for valid or invalid power method PDF's. The PMF's of count variables are shown as vertical bar graphs (using ggplot2::geom_col). The function returns a ggplot2-package object so the user can save it or modify it as necessary. The graph parameters (i.e. title, sim_color, sim_lty, sim_size, target_color, target_lty, target_size, legend.position, legend.justification, legend.text.size, title.text.size, axis.text.size, and axis.title.size) are inputs to the ggplot2-package functions so information about valid inputs can be obtained from that package's documentation.

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
plot_simpdf_theory(sim_y, title = "Simulated Probability Density Function",
  ylower = NULL, yupper = NULL, sim_color = "dark blue", sim_lty = 1,
  sim_size = 1, col_width = 0.5, overlay = TRUE, cont_var = TRUE,
  target_color = "dark green", target_lty = 2, target_size = 1,
  Dist = c("Benini", "Beta", "Beta-Normal", "Birnbaum-Saunders", "Chisq",
  "Dagum", "Exponential", "Exp-Geometric", "Exp-Logarithmic", "Exp-Poisson",
  "F", "Fisk", "Frechet", "Gamma", "Gaussian", "Gompertz", "Gumbel",
  "Kumaraswamy", "Laplace", "Lindley", "Logistic", "Loggamma", "Lognormal",
  "Lomax", "Makeham", "Maxwell", "Nakagami", "Paralogistic", "Pareto", "Perks",
  "Rayleigh", "Rice", "Singh-Maddala", "Skewnormal", "t", "Topp-Leone",
  "Triangular", "Uniform", "Weibull", "Poisson", "Negative_Binomial"),
  params = NULL, fx = NULL, lower = NULL, upper = NULL,
  legend.position = c(0.975, 0.9), legend.justification = c(1, 1),
  legend.text.size = 10, title.text.size = 15, axis.text.size = 10,
  axis.title.size = 13)

Arguments

sim_y

a vector of simulated data

title

the title for the graph (default = "Simulated Probability Density Function")

ylower

the lower y value to use in the plot (default = NULL, uses minimum simulated y value) on the x-axis

yupper

the upper y value (default = NULL, uses maximum simulated y value) on the x-axis

sim_color

the line color for the simulated PDF (or column fill color in the case of Dist = "Poisson" or "Negative_Binomial")

sim_lty

the line type for the simulated PDF (default = 1, solid line)

sim_size

the line width for the simulated PDF

col_width

width of column for simulated/target PMF of count variables (default = 0.5)

overlay

if TRUE (default), the target distribution is also plotted given either a distribution name (and parameters) or PDF function fx (with bounds = ylower, yupper)

cont_var

TRUE (default) for continuous variables, FALSE for count variables

target_color

the line color for the target PDF (or column fill color in the case of Dist = "Poisson" or "Negative_Binomial")

target_lty

the line type for the target PDF (default = 2, dashed line)

target_size

the line width for the target PDF

Dist

name of the distribution. The possible values are: "Benini", "Beta", "Beta-Normal", "Birnbaum-Saunders", "Chisq", "Exponential", "Exp-Geometric", "Exp-Logarithmic", "Exp-Poisson", "F", "Fisk", "Frechet", "Gamma", "Gaussian", "Gompertz", "Gumbel", "Kumaraswamy", "Laplace", "Lindley", "Logistic",
"Loggamma", "Lognormal", "Lomax", "Makeham", "Maxwell", "Nakagami", "Paralogistic", "Pareto", "Perks", "Rayleigh", "Rice", "Singh-Maddala",
"Skewnormal", "t", "Topp-Leone", "Triangular", "Uniform", "Weibull", "Poisson", and "Negative_Binomial". Please refer to the documentation for each package (either stats-package, VGAM-package, or triangle) for information on appropriate parameter inputs.

params

a vector of parameters (up to 4) for the desired distribution (keep NULL if fx supplied instead); for Poisson variables, must be lambda (mean) and the probability of a structural zero (use 0 for regular Poisson variables); for Negative Binomial variables, must be size, mean and the probability of a structural zero (use 0 for regular NB variables)

fx

a PDF input as a function of x only, i.e. fx = function(x) 0.5 * (x - 1)^2; must return a scalar (keep NULL if Dist supplied instead)

lower

the lower support bound for fx

upper

the upper support bound for fx

legend.position

the position of the legend

legend.justification

the justification of the legend

legend.text.size

the size of the legend labels

title.text.size

the size of the plot title

axis.text.size

the size of the axes text (tick labels)

axis.title.size

the size of the axes titles

Value

A ggplot2-package object.

References

Please see the references for plot_simtheory.

See Also

calc_theory, ggplot

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
# Using normal mixture variable from contmixvar1 example
Nmix <- contmixvar1(n = 1000, "Polynomial", means = 0, vars = 1,
  mix_pis = c(0.4, 0.6), mix_mus = c(-2, 2), mix_sigmas = c(1, 1),
  mix_skews = c(0, 0), mix_skurts = c(0, 0), mix_fifths = c(0, 0),
  mix_sixths = c(0, 0))
plot_simpdf_theory(Nmix$Y_mix[, 1],
  title = "Mixture of Normal Distributions",
  fx = function(x) 0.4 * dnorm(x, -2, 1) + 0.6 * dnorm(x, 2, 1),
  lower = -5, upper = 5)
## Not run: 
# Mixture of Beta(6, 3), Beta(4, 1.5), and Beta(10, 20)
Stcum1 <- calc_theory("Beta", c(6, 3))
Stcum2 <- calc_theory("Beta", c(4, 1.5))
Stcum3 <- calc_theory("Beta", c(10, 20))
mix_pis <- c(0.5, 0.2, 0.3)
mix_mus <- c(Stcum1[1], Stcum2[1], Stcum3[1])
mix_sigmas <- c(Stcum1[2], Stcum2[2], Stcum3[2])
mix_skews <- c(Stcum1[3], Stcum2[3], Stcum3[3])
mix_skurts <- c(Stcum1[4], Stcum2[4], Stcum3[4])
mix_fifths <- c(Stcum1[5], Stcum2[5], Stcum3[5])
mix_sixths <- c(Stcum1[6], Stcum2[6], Stcum3[6])
mix_Six <- list(seq(0.01, 10, 0.01), c(0.01, 0.02, 0.03),
  seq(0.01, 10, 0.01))
Bstcum <- calc_mixmoments(mix_pis, mix_mus, mix_sigmas, mix_skews,
  mix_skurts, mix_fifths, mix_sixths)
Bmix <- contmixvar1(n = 10000, "Polynomial", Bstcum[1], Bstcum[2]^2,
  mix_pis, mix_mus, mix_sigmas, mix_skews, mix_skurts, mix_fifths,
  mix_sixths, mix_Six)
plot_simpdf_theory(Bmix$Y_mix[, 1], title = "Mixture of Beta Distributions",
  fx = function(x) mix_pis[1] * dbeta(x, 6, 3) + mix_pis[2] *
    dbeta(x, 4, 1.5) + mix_pis[3] * dbeta(x, 10, 20), lower = 0, upper = 1)

## End(Not run)

SimCorrMix documentation built on May 2, 2019, 1:24 p.m.