View source: R/summary_functions.R
RE | R Documentation |
Computes the relative efficiency given the RMSE (default) or MSE values for multiple estimators.
RE(x, MSE = FALSE, percent = FALSE, unname = FALSE)
x |
a |
MSE |
logical; are the input value mean squared errors instead of root mean square errors? |
percent |
logical; change returned result to percentage by multiplying by 100? Default is FALSE |
unname |
logical; apply |
returns a vector
of variance ratios indicating the relative efficiency compared
to the first estimator. Values less than 1 indicate better efficiency than the first
estimator, while values greater than 1 indicate worse efficiency than the first estimator
Phil Chalmers rphilip.chalmers@gmail.com
Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simulations
with the SimDesign Package. The Quantitative Methods for Psychology, 16
(4), 248-280.
\Sexpr[results=rd]{tools:::Rd_expr_doi("10.20982/tqmp.16.4.p248")}
Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte
Carlo simulation. Journal of Statistics Education, 24
(3), 136-156.
\Sexpr[results=rd]{tools:::Rd_expr_doi("10.1080/10691898.2016.1246953")}
pop <- 1
samp1 <- rnorm(100, 1, sd = 0.5)
RMSE1 <- RMSE(samp1, pop)
samp2 <- rnorm(100, 1, sd = 1)
RMSE2 <- RMSE(samp2, pop)
RE(c(RMSE1, RMSE2))
RE(c(RMSE1, RMSE2), percent = TRUE) # as a percentage
# using MSE instead
mse <- c(RMSE1, RMSE2)^2
RE(mse, MSE = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.