rmgh | R Documentation |
Generate non-normal distributions using the multivariate g-and-h distribution. Can be used to generate several different classes of univariate and multivariate distributions.
rmgh(n, g, h, mean = rep(0, length(g)), sigma = diag(length(mean)))
n |
number of samples to draw |
g |
the g parameter(s) which control the skew of a distribution in terms of both direction and magnitude |
h |
the h parameter(s) which control the tail weight or elongation of a distribution and is positively related with kurtosis |
mean |
a vector of k elements for the mean of the variables |
sigma |
desired k x k covariance matrix between bivariate non-normal variables |
Phil Chalmers rphilip.chalmers@gmail.com
Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simulations
with the SimDesign Package. The Quantitative Methods for Psychology, 16
(4), 248-280.
\Sexpr[results=rd]{tools:::Rd_expr_doi("10.20982/tqmp.16.4.p248")}
Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte
Carlo simulation. Journal of Statistics Education, 24
(3), 136-156.
\Sexpr[results=rd]{tools:::Rd_expr_doi("10.1080/10691898.2016.1246953")}
set.seed(1)
# univariate
norm <- rmgh(10000,1e-5,0)
hist(norm)
skew <- rmgh(10000,1/2,0)
hist(skew)
neg_skew_platykurtic <- rmgh(10000,-1,-1/2)
hist(neg_skew_platykurtic)
# multivariate
sigma <- matrix(c(2,1,1,4), 2)
mean <- c(-1, 1)
twovar <- rmgh(10000, c(-1/2, 1/2), c(0,0),
mean=mean, sigma=sigma)
hist(twovar[,1])
hist(twovar[,2])
plot(twovar)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.