View source: R/summary_functions.R
bias | R Documentation |
Computes the (relative) bias of a sample estimate from the parameter value.
Accepts estimate and parameter values, as well as estimate values which are in deviation form.
If relative bias is requested the estimate
and parameter
inputs are both required.
bias(
estimate,
parameter = NULL,
type = "bias",
abs = FALSE,
percent = FALSE,
unname = FALSE
)
estimate |
a |
parameter |
a |
type |
type of bias statistic to return. Default ( |
abs |
logical; find the absolute bias between the parameters and estimates? This effectively
just applies the |
percent |
logical; change returned result to percentage by multiplying by 100? Default is FALSE |
unname |
logical; apply |
returns a numeric
vector indicating the overall (relative/standardized)
bias in the estimates
Phil Chalmers rphilip.chalmers@gmail.com
Chalmers, R. P., & Adkins, M. C. (2020). Writing Effective and Reliable Monte Carlo Simulations
with the SimDesign Package. The Quantitative Methods for Psychology, 16
(4), 248-280.
\Sexpr[results=rd]{tools:::Rd_expr_doi("10.20982/tqmp.16.4.p248")}
Sigal, M. J., & Chalmers, R. P. (2016). Play it again: Teaching statistics with Monte
Carlo simulation. Journal of Statistics Education, 24
(3), 136-156.
\Sexpr[results=rd]{tools:::Rd_expr_doi("10.1080/10691898.2016.1246953")}
RMSE
pop <- 2
samp <- rnorm(100, 2, sd = 0.5)
bias(samp, pop)
bias(samp, pop, type = 'relative')
bias(samp, pop, type = 'standardized')
dev <- samp - pop
bias(dev)
# equivalent here
bias(mean(samp), pop)
# matrix input
mat <- cbind(M1=rnorm(100, 2, sd = 0.5), M2 = rnorm(100, 2, sd = 1))
bias(mat, parameter = 2)
bias(mat, parameter = 2, type = 'relative')
bias(mat, parameter = 2, type = 'standardized')
# different parameter associated with each column
mat <- cbind(M1=rnorm(1000, 2, sd = 0.25), M2 = rnorm(1000, 3, sd = .25))
bias(mat, parameter = c(2,3))
# same, but with data.frame
df <- data.frame(M1=rnorm(100, 2, sd = 0.5), M2 = rnorm(100, 2, sd = 1))
bias(df, parameter = c(2,2))
# parameters of the same size
parameters <- 1:10
estimates <- parameters + rnorm(10)
bias(estimates, parameters)
# relative difference dividing by the magnitude of parameters
bias(estimates, parameters, type = 'abs_relative')
# relative bias as a percentage
bias(estimates, parameters, type = 'abs_relative', percent = TRUE)
# percentage error (PE) statistic given alpha (Type I error) and EDR() result
# edr <- EDR(results, alpha = .05)
edr <- c(.04, .05, .06, .08)
bias(matrix(edr, 1L), .05, type = 'relative', percent = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.