Description Usage Arguments Value References See Also
View source: R/findintercorr_cont_pois.R
This function calculates a k_cont x k_pois intermediate matrix of correlations for the k_cont continuous and
k_pois Poisson variables. It extends the method of Amatya & Demirtas (2015, doi: 10.1080/00949655.2014.953534) to continuous
variables generated using Headrick's fifth-order polynomial transformation.  Here, the intermediate correlation between Z1 and Z2 (where Z1 is
the standard normal variable transformed using Headrick's fifth-order or Fleishman's third-order method to produce a
continuous variable Y1, and Z2 is the standard normal variable used to generate a Poisson variable via the inverse cdf method) is
calculated by dividing the target correlation by a correction factor.  The correction factor is the product of the
upper Frechet-Hoeffding bound on the correlation between a Poisson variable and the normal variable used to generate it
(see chat_pois) and the power method correlation (described in Headrick & Kowalchuk, 2007,
doi: 10.1080/10629360600605065) between Y1 and Z1.  The function is used in findintercorr and
rcorrvar.  This function would not ordinarily be called by the user.
| 1 2 | findintercorr_cont_pois(method, constants, rho_cont_pois, lam, nrand = 100000,
  seed = 1234)
 | 
| method | the method used to generate the  | 
| constants | a matrix with  | 
| rho_cont_pois | a  | 
| lam | a vector of lambda (> 0) constants for the Poisson variables (see  | 
| nrand | the number of random numbers to generate in calculating the bound (default = 10000) | 
| seed | the seed used in random number generation (default = 1234) | 
a k_cont x k_pois matrix whose rows represent the k_cont continuous variables and columns represent the
k_pois Poisson variables
Amatya A & Demirtas H (2015). Simultaneous generation of multivariate mixed data with Poisson and normal marginals. Journal of Statistical Computation and Simulation, 85(15): 3129-39. doi: 10.1080/00949655.2014.953534.
Demirtas H & Hedeker D (2011). A practical way for computing approximate lower and upper correlation bounds. American Statistician, 65(2): 104-109. doi: 10.1198/tast.2011.10090.
Fleishman AI (1978). A Method for Simulating Non-normal Distributions. Psychometrika, 43, 521-532. doi: 10.1007/BF02293811.
Frechet M. Sur les tableaux de correlation dont les marges sont donnees. Ann. l'Univ. Lyon SectA. 1951;14:53-77.
Headrick TC (2002). Fast Fifth-order Polynomial Transforms for Generating Univariate and Multivariate Non-normal Distributions. Computational Statistics & Data Analysis, 40(4):685-711. doi: 10.1016/S0167-9473(02)00072-5. (ScienceDirect)
Headrick TC (2004). On Polynomial Transformations for Simulating Multivariate Nonnormal Distributions. Journal of Modern Applied Statistical Methods, 3(1), 65-71. doi: 10.22237/jmasm/1083370080.
Headrick TC, Kowalchuk RK (2007). The Power Method Transformation: Its Probability Density Function, Distribution Function, and Its Further Use for Fitting Data. Journal of Statistical Computation and Simulation, 77, 229-249. doi: 10.1080/10629360600605065.
Headrick TC, Sawilowsky SS (1999). Simulating Correlated Non-normal Distributions: Extending the Fleishman Power Method. Psychometrika, 64, 25-35. doi: 10.1007/BF02294317.
Headrick TC, Sheng Y, & Hodis FA (2007). Numerical Computing and Graphics for the Power Method Transformation Using Mathematica. Journal of Statistical Software, 19(3), 1 - 17. doi: 10.18637/jss.v019.i03.
Hoeffding W. Scale-invariant correlation theory. In: Fisher NI, Sen PK, editors. The collected works of Wassily Hoeffding. New York: Springer-Verlag; 1994. p. 57-107.
Yahav I & Shmueli G (2012). On Generating Multivariate Poisson Data in Management Science Applications. Applied Stochastic Models in Business and Industry, 28(1): 91-102. doi: 10.1002/asmb.901.
chat_pois, power_norm_corr,
find_constants,
findintercorr, rcorrvar
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.