Description Usage Arguments Value References See Also Examples
This plots simulated continuous or count data and overlays external data, both as histograms.
The external data is a required input. The simulated data is centered and scaled to have the same mean and variance as the external
data set. If the user wants to only plot simulated data, plot_sim_theory
should be used instead
with overlay = FALSE
.
It returns a ggplot2-package
object so the user can modify as necessary.
The graph parameters (i.e. title
, power_color
, target_color
, nbins
) are
ggplot2-package
parameters. It works for valid or invalid power method pdfs.
1 2 3 4 5 | plot_sim_ext(sim_y, title = "Simulated Data Values", ylower = NULL,
yupper = NULL, power_color = "dark blue", ext_y = NULL,
target_color = "dark green", nbins = 100, legend.position = c(0.975,
0.9), legend.justification = c(1, 1), legend.text.size = 10,
title.text.size = 15, axis.text.size = 10, axis.title.size = 13)
|
sim_y |
a vector of simulated data |
title |
the title for the graph (default = "Simulated Data Values") |
ylower |
the lower y value to use in the plot (default = NULL, uses minimum simulated y value) |
yupper |
the upper y value (default = NULL, uses maximum simulated y value) |
power_color |
the histogram fill color for the simulated variable (default = "dark blue") |
ext_y |
a vector of external data (required) |
target_color |
the histogram fill color for the target data (default = "dark green") |
nbins |
the number of bins to use in generating the histograms (default = 100) |
legend.position |
the position of the legend |
legend.justification |
the justification of the legend |
legend.text.size |
the size of the legend labels |
title.text.size |
the size of the plot title |
axis.text.size |
the size of the axes text (tick labels) |
axis.title.size |
the size of the axes titles |
A ggplot2-package
object.
Please see the references for plot_cdf
.
Wickham H. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2009.
ggplot2-package
, geom_histogram
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 | ## Not run:
# Logistic Distribution: mean = 0, variance = 1
seed = 1234
# Simulate "external" data set
set.seed(seed)
ext_y <- rlogis(10000)
# Find standardized cumulants
stcum <- calc_theory(Dist = "Logistic", params = c(0, 1))
# Simulate without the sixth cumulant correction
# (invalid power method pdf)
Logvar1 <- nonnormvar1(method = "Polynomial", means = 0, vars = 1,
skews = stcum[3], skurts = stcum[4],
fifths = stcum[5], sixths = stcum[6],
n = 10000, seed = seed)
# Plot simulated variable and external data
plot_sim_ext(sim_y = Logvar1$continuous_variable,
title = "Invalid Logistic Simulated Data Values",
ext_y = ext_y)
# Simulate with the sixth cumulant correction
# (valid power method pdf)
Logvar2 <- nonnormvar1(method = "Polynomial", means = 0, vars = 1,
skews = stcum[3], skurts = stcum[4],
fifths = stcum[5], sixths = stcum[6],
Six = seq(1.5, 2, 0.05), n = 10000, seed = seed)
# Plot simulated variable and external data
plot_sim_ext(sim_y = Logvar2$continuous_variable,
title = "Valid Logistic Simulated Data Values",
ext_y = ext_y)
# Simulate 2 Poisson distributions (means = 10, 15) and correlation 0.3
# using Method 1
Pvars <- rcorrvar(k_pois = 2, lam = c(10, 15),
rho = matrix(c(1, 0.3, 0.3, 1), 2, 2), seed = seed)
# Simulate "external" data set
set.seed(seed)
ext_y <- rpois(10000, 10)
# Plot 1st simulated variable and external data
plot_sim_ext(sim_y = Pvars$Poisson_variable[, 1], ext_y = ext_y)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.