Description Usage Arguments Value References See Also
View source: R/findintercorr_pois.R
This function calculates a k_pois x k_pois
intermediate matrix of correlations for the
Poisson variables using the method of Yahav & Shmueli (2012, doi: 10.1002/asmb.901). The intermediate correlation between Z1 and Z2 (the
standard normal variables used to generate the Poisson variables Y1 and Y2 via the inverse cdf method) is
calculated using a logarithmic transformation of the target correlation. First, the upper and lower Frechet-Hoeffding bounds
(mincor, maxcor) ρ_{y1,y2} are simulated. Then the intermediate correlation is found as follows:
ρ_{z1,z2} = (1/b) * log((ρ_{y1,y2} - c)/a)
, where a = -(maxcor * mincor)/(maxcor + mincor),
b = log((maxcor + a)/a), and c = -a. The function adapts code from Amatya & Demirtas' (2016) package
PoisNor-package
by:
1) allowing specifications for the number of random variates and the seed for reproducibility
2) providing the following checks: if ρ_{z1,z2} >= 1, ρ_{z1,z2} is set to 0.99; if ρ_{z1,z2} <= -1, ρ_{z1,z2} is set to -0.99.
The function is used in findintercorr
and rcorrvar
.
This function would not ordinarily be called by the user.
Note: The method used here is also used in the packages PoisBinOrdNor-package
and
PoisBinOrdNonNor-package
by Demirtas et al. (2017), but without my modifications.
1 | findintercorr_pois(rho_pois, lam, nrand = 100000, seed = 1234)
|
rho_pois |
a |
lam |
a vector of lambda (> 0) constants for the Poisson variables (see |
nrand |
the number of random numbers to generate in calculating the bound (default = 10000) |
seed |
the seed used in random number generation (default = 1234) |
the k_pois x k_pois
intermediate correlation matrix for the Poisson variables
Amatya A & Demirtas H (2015). Simultaneous generation of multivariate mixed data with Poisson and normal marginals. Journal of Statistical Computation and Simulation, 85(15): 3129-39. doi: 10.1080/00949655.2014.953534.
Amatya A & Demirtas H (2016). PoisNor: Simultaneous Generation of Multivariate Data with Poisson and Normal Marginals. R package version 1.1. https://CRAN.R-project.org/package=PoisNor
Demirtas H & Hedeker D (2011). A practical way for computing approximate lower and upper correlation bounds. American Statistician, 65(2): 104-109.
Demirtas H, Hu Y, & Allozi R (2017). PoisBinOrdNor: Data Generation with Poisson, Binary, Ordinal and Normal Components. R package version 1.4. https://CRAN.R-project.org/package=PoisBinOrdNor
Demirtas H, Nordgren R, & Allozi R (2017). PoisBinOrdNonNor: Generation of Up to Four Different Types of Variables. R package version 1.3. https://CRAN.R-project.org/package=PoisBinOrdNonNor
Frechet M. Sur les tableaux de correlation dont les marges sont donnees. Ann. l'Univ. Lyon SectA. 1951;14:53-77.
Hoeffding W. Scale-invariant correlation theory. In: Fisher NI, Sen PK, editors. The collected works of Wassily Hoeffding. New York: Springer-Verlag; 1994. p. 57-107.
Yahav I & Shmueli G (2012). On Generating Multivariate Poisson Data in Management Science Applications. Applied Stochastic Models in Business and Industry, 28(1): 91-102. doi: 10.1002/asmb.901.
PoisNor-package
, findintercorr_nb
,
findintercorr_pois_nb
,
findintercorr
, rcorrvar
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.