Description Usage Arguments Value References See Also Examples
This plots the theoretical power method cumulative distribution function:
F_p(Z)(p(z)) = F_p(Z)(p(z), F_Z(z)),
as given in Headrick & Kowalchuk (2007, doi: 10.1080/10629360600605065).
It is a parametric plot with sigma * y + mu, where y = p(z), on the x-axis and F_Z(z) on the y-axis,
where z is vector of n random standard normal numbers (generated with a seed set by user). Given a vector of polynomial
transformation constants, the function generates sigma * y + mu and calculates the theoretical cumulative probabilities
using F_p(Z)(p(z), F_Z(z)). If calc_cprob
= TRUE, the cumulative probability up to delta = sigma * y + mu is
calculated (see cdf_prob
) and the region on the plot is filled with a dashed horizontal
line drawn at F_p(Z)(delta). The cumulative probability is stated on top of the line. It returns a ggplot2-package
object so
the user can modify as necessary. The graph parameters (i.e. title
, color
, fill
, hline
) are
ggplot2-package
parameters. It works for valid or invalid power method pdfs.
1 2 3 4 5 6 | plot_cdf(c = NULL, method = c("Fleishman", "Polynomial"), mu = 0,
sigma = 1, title = "Cumulative Distribution Function", ylower = NULL,
yupper = NULL, calc_cprob = FALSE, delta = 5, color = "dark blue",
fill = "blue", hline = "dark green", n = 10000, seed = 1234,
text.size = 11, title.text.size = 15, axis.text.size = 10,
axis.title.size = 13, lower = -1000000, upper = 1000000)
|
c |
a vector of constants c0, c1, c2, c3 (if |
method |
the method used to generate the continuous variable y = p(z). "Fleishman" uses Fleishman's third-order polynomial transformation and "Polynomial" uses Headrick's fifth-order transformation. |
mu |
mean for the continuous variable (default = 0) |
sigma |
standard deviation for the continuous variable (default = 1) |
title |
the title for the graph (default = "Cumulative Distribution Function") |
ylower |
the lower y value to use in the plot (default = NULL, uses minimum simulated y value) |
yupper |
the upper y value (default = NULL, uses maximum simulated y value) |
calc_cprob |
if TRUE (default = FALSE), |
delta |
the value sigma * y + mu, where y = p(z), at which to evaluate the cumulative probability |
color |
the line color for the cdf (default = "dark blue") |
fill |
the fill color if |
hline |
the dashed horizontal line color drawn at delta if |
n |
the number of random standard normal numbers to use in generating y = p(z) (default = 10000) |
seed |
the seed value for random number generation (default = 1234) |
text.size |
the size of the text displaying the cumulative probability up to |
title.text.size |
the size of the plot title |
axis.text.size |
the size of the axes text (tick labels) |
axis.title.size |
the size of the axes titles |
lower |
lower bound for |
upper |
upper bound for |
A ggplot2-package
object.
Fleishman AI (1978). A Method for Simulating Non-normal Distributions. Psychometrika, 43, 521-532. doi: 10.1007/BF02293811.
Headrick TC (2002). Fast Fifth-order Polynomial Transforms for Generating Univariate and Multivariate Non-normal Distributions. Computational Statistics & Data Analysis, 40(4):685-711. doi: 10.1016/S0167-9473(02)00072-5. (ScienceDirect)
Headrick TC (2004). On Polynomial Transformations for Simulating Multivariate Nonnormal Distributions. Journal of Modern Applied Statistical Methods, 3(1), 65-71. doi: 10.22237/jmasm/1083370080.
Headrick TC, Kowalchuk RK (2007). The Power Method Transformation: Its Probability Density Function, Distribution Function, and Its Further Use for Fitting Data. Journal of Statistical Computation and Simulation, 77, 229-249. doi: 10.1080/10629360600605065.
Headrick TC, Sawilowsky SS (1999). Simulating Correlated Non-normal Distributions: Extending the Fleishman Power Method. Psychometrika, 64, 25-35. doi: 10.1007/BF02294317.
Headrick TC, Sheng Y, & Hodis FA (2007). Numerical Computing and Graphics for the Power Method Transformation Using Mathematica. Journal of Statistical Software, 19(3), 1 - 17. doi: 10.18637/jss.v019.i03.
Wickham H. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2009.
find_constants
, cdf_prob
,
ggplot2-package
, geom_path
, geom_abline
,
geom_ribbon
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 | ## Not run:
# Logistic Distribution: mean = 0, sigma = 1
# Find standardized cumulants
stcum <- calc_theory(Dist = "Logistic", params = c(0, 1))
# Find constants without the sixth cumulant correction
# (invalid power method pdf)
con1 <- find_constants(method = "Polynomial", skews = stcum[3],
skurts = stcum[4], fifths = stcum[5],
sixths = stcum[6], n = 25, seed = 1234)
# Plot cdf with cumulative probability calculated up to delta = 5
plot_cdf(c = con1$constants, method = "Polynomial",
title = "Invalid Logistic CDF", calc_cprob = TRUE, delta = 5)
# Find constants with the sixth cumulant correction
# (valid power method pdf)
con2 <- find_constants(method = "Polynomial", skews = stcum[3],
skurts = stcum[4], fifths = stcum[5],
sixths = stcum[6], Six = seq(1.5, 2, 0.05))
# Plot cdf with cumulative probability calculated up to delta = 5
plot_cdf(c = con2$constants, method = "Polynomial",
title = "Valid Logistic CDF", calc_cprob = TRUE, delta = 5)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.