Nothing
#' Generate Dataset with different treatment effect in subgroup
#'
#' @param condition condition row of Design dataset
#' @param fixed_objects fixed objects of Design dataset
#'
#' @details
#' Condidtion has to contain the following columns:
#'
#' * n_trt number of paitents in treatment arm
#' * n_ctrl number of patients in control arm
#' * hazard_ctrl hazard in the control arm
#' * hazard_trt hazard in the treatment arm for not cured patients
#' * hazard_subgroup hazard in the subgroup in the treatment arm
#' * prevalence proportion of cured patients
#'
#' @return
#' For generate_subgroup: A dataset with the columns t (time) and trt
#' (1=treatment, 0=control), evt (event, currently TRUE for all observations)
#'
#' @export
#' @describeIn generate_subgroup simulates a dataset with a mixture of cured
#' patients
#'
#' @examples
#' one_simulation <- merge(
#' assumptions_subgroup(),
#' design_fixed_followup(),
#' by=NULL
#' ) |>
#' head(1) |>
#' generate_subgroup()
#' head(one_simulation)
#' tail(one_simulation)
generate_subgroup <- function(condition, fixed_objects=NULL){
if (condition$prevalence < 0 || condition$prevalence > 1) {
stop(gettext("Subgroup prevalence has to be between 0 and 1"))
}
counts <- rmultinom(1, condition$n_trt, prob=c(condition$prevalence, 1-condition$prevalence))
data_subgroup <- data.frame(
t = miniPCH::rpch_fun(0, condition$hazard_subgroup, discrete = TRUE)(counts[1]),
trt = 1,
evt = TRUE,
subgroup = 1
)
data_trt <- data.frame(
t = miniPCH::rpch_fun(0, condition$hazard_trt, discrete = TRUE)(counts[2]),
trt = 1,
evt = TRUE,
subgroup = 0
)
data_ctrl <- data.frame(
t = miniPCH::rpch_fun(0, condition$hazard_ctrl, discrete = TRUE)(condition$n_ctrl),
trt = 0,
evt = TRUE,
subgroup = rbinom(condition$n_ctrl, 1, condition$prevalence)
)
rbind(data_trt, data_subgroup, data_ctrl)
}
#' Create an empty assumtions data.frame for generate_subgroup
#'
#' @param print print code to generate parameter set?
#'
#' @return For assumptions_subgroup: a design tibble with default values invisibly
#'
#' @details assumptions_subgroup generates a default design `data.frame` for use
#' with generate_subgroup If print is `TRUE` code to produce the template is
#' also printed for copying, pasting and editing by the user. (This is the
#' default when run in an interactive session.)
#'
#' @export
#' @describeIn generate_subgroup generate default assumptions `data.frame`
#'
#' @examples
#' Design <- assumptions_subgroup()
#' Design
assumptions_subgroup <- function(print=interactive()){
skel <- "expand.grid(
hazard_ctrl=m2r(24), # med. survival ctrl. 24 months
hazard_trt=m2r(36), # med. survival trt 36 months
hazard_subgroup=m2r(240), # med. survival subgroup 20 years
prevalence=seq(0.2, 0.8, by=0.2), # prevalence 0.2, 0.4, 0.6, 0.8
random_withdrawal=m2r(120) # median time to random withdrawal 10 years
)
"
if(print){
cat(skel)
}
invisible(
skel |>
str2expression() |>
eval()
)
}
#' Calculate true summary statistics for scenarios with differential treatment effect in subgroup
#'
#' @param Design Design data.frame for subgroup
#' @param cutoff_stats (optionally named) cutoff times, see details
#' @param milestones (optionally named) vector of times at which milestone survival should be calculated
#' @param fixed_objects additional settings, see details
#'
#' @return For true_summary_statistics_subgroup: the design data.frame
#' passed as argument with the additional columns
#'
#' @export
#'
#' @details
#'
#' `cutoff_stats` are the times used to calculate the statistics like average
#' hazard ratios and RMST, that are only calculated up to a certain point.
#'
#' @describeIn generate_subgroup calculate true summary statistics for subgroup
#'
#' @examples
#' my_design <- merge(
#' assumptions_subgroup(),
#' design_fixed_followup(),
#' by=NULL
#' )
#' my_design <- true_summary_statistics_subgroup(my_design)
#' my_design
true_summary_statistics_subgroup <- function(Design, cutoff_stats=NULL, milestones=NULL, fixed_objects=NULL){
true_summary_statistics_subgroup_rowwise <- function(condition, cutoff_stats, milestones){
if (condition$prevalence < 0 || condition$prevalence > 1) {
stop(gettext("Subgroup prevalence has to be between 0 and 1"))
}
haz_trt <- mixture_haz_fun(
c(1-condition$prevalence, condition$prevalence),
pdfs = list(
miniPCH::dpch_fun(0, condition$hazard_trt),
miniPCH::dpch_fun(0, condition$hazard_subgroup)
),
survs = list(
miniPCH::spch_fun(0, condition$hazard_trt),
miniPCH::spch_fun(0, condition$hazard_subgroup)
)
)
pdf_trt <- mixture_pdf_fun(
c(1-condition$prevalence, condition$prevalence),
list(
miniPCH::dpch_fun(0, condition$hazard_trt),
miniPCH::dpch_fun(0, condition$hazard_subgroup)
)
)
surv_trt <- mixture_surv_fun(
c(1-condition$prevalence, condition$prevalence),
list(
miniPCH::spch_fun(0, condition$hazard_trt),
miniPCH::spch_fun(0, condition$hazard_subgroup)
)
)
quant_trt <- mixture_quant_fun(
c(1-condition$prevalence, condition$prevalence),
cdfs=list(
miniPCH::ppch_fun(0, condition$hazard_trt),
miniPCH::ppch_fun(0, condition$hazard_subgroup)
),
quants=list(
miniPCH::qpch_fun(0, condition$hazard_trt),
miniPCH::qpch_fun(0, condition$hazard_subgroup)
)
)
haz_ctrl <- miniPCH::hpch_fun(0, condition$hazard_ctrl)
pdf_ctrl <- miniPCH::dpch_fun(0, condition$hazard_ctrl)
surv_ctrl <- miniPCH::spch_fun(0, condition$hazard_ctrl)
quant_ctrl <- miniPCH::qpch_fun(0, condition$hazard_ctrl)
real_stats <- fast_real_statistics(
haz_trt, pdf_trt, surv_trt, quant_trt,
haz_ctrl, pdf_ctrl, surv_ctrl, quant_ctrl,
N_trt=condition$n_trt, N_ctrl=condition$n_ctrl, cutoff=cutoff_stats, milestones=milestones
)
res <- cbind(
condition,
real_stats
)
row.names(res) <- NULL
res
}
Design <- Design |>
split(1:nrow(Design)) |>
lapply(true_summary_statistics_subgroup_rowwise, cutoff_stats = cutoff_stats, milestones=milestones)
Design <- do.call(rbind, Design)
Design
}
#' Calculate hazards in treatment arm in subgroup and compliment
#'
#' @param design design data.frame
#' @param target_power_ph target power under proportional hazards
#' @param final_events target events for inversion of Schönfeld Formula, defaults to `condition$final_events`
#' @param target_alpha target one-sided alpha level for the power calculation
#'
#' @return For hazard_subgroup_from_PH_effect_size: the design data.frame passed as
#' argument with the additional columns hazard_trt and hazard_subgroup.
#' @export
#'
#' @describeIn generate_subgroup Calculate hazards in treatement arm
#'
#' @details `hazard_subgroup_from_PH_effect_size` calculates the hazard rate in
#' the subgroup and the compliment of the subgroup in the treatment arm as
#' follows: First, the hazard ratio needed to archive the desired power under
#' proportional hazards is calculated by inverting Schönfeld's sample size
#' formula. Second the median survival times for both arms under this hazard
#' ratio and proportional hazards are calculated. Finally the hazard rate of
#' the treatment arm in the subgroup and its complement are set such that the
#' median survival time is the same as the one calculated under proportional
#' hazards.
#'
#' This is a heuristic and to some extent arbitrary approach to calculate
#' hazard ratios that correspond to reasonable and realistic scenarios.
#'
#' @examples
#'
#' my_design <- merge(
#' assumptions_subgroup(),
#' design_fixed_followup(),
#' by=NULL
#' )
#'
#' my_design$hazard_trt <- NA
#' my_design$hazard_subgroup <- NA
#' my_design$hr_subgroup_relative <- 0.9
#' my_design$final_events <- ceiling((my_design$n_ctrl + my_design$n_trt) * 0.75)
#' my_design <- hazard_subgroup_from_PH_effect_size(my_design, target_power_ph=0.9)
#' my_design
hazard_subgroup_from_PH_effect_size <- function(design, target_power_ph=NA_real_, final_events=NA_real_, target_alpha=0.025){
get_hr_after <- function(condition, target_power_ph=NA_real_, final_events=NA_real_){
if(is.na(final_events)){
if(hasName(condition, "final_events")){
final_events <- condition$final_events
} else {
stop("final_events not given and not present in condition")
}
}
if(is.na(target_power_ph)){
if(hasName(condition, "effect_size_ph")){
target_power_ph <- condition$effect_size_ph
} else {
stop(gettext("target_ph_power not given and effect_size_ph not present in design"))
}
}
if(target_power_ph == 0){
condition$hazard_trt <- condition$hazard_ctrl
}
ph_hr <- hr_required_schoenfeld(
final_events,
alpha=target_alpha,
beta=(1-target_power_ph),
p=(condition$n_ctrl/(condition$n_ctrl + condition$n_trt))
)
scale <- 1/condition$hazard_ctrl
median_trt <- miniPCH::qpch_fun(0, scale * condition$hazard_ctrl * ph_hr)(0.5)
median_ctrl <- miniPCH::qpch_fun(0, scale * condition$hazard_ctrl )(0.5)
if(target_power_ph == 0){
median_trt <- median_ctrl
}
target_fun_hazards_subgroups <- function(hazard_compliment){
sapply(hazard_compliment, \(h){
my_quant_fun <- mixture_quant_fun(
c(condition$prevalence, 1-condition$prevalence),
cdfs = list(
miniPCH::ppch_fun(0, h*condition$hr_subgroup_relative),
miniPCH::ppch_fun(0, h)
),
quants = list(
miniPCH::qpch_fun(0, h*condition$hr_subgroup_relative),
miniPCH::qpch_fun(0, h)
)
)
median_trt - my_quant_fun(0.5)
})
}
my_root <- uniroot(
target_fun_hazards_subgroups,
interval=c(0, 2),
f.lower = -Inf,
extendInt = "upX",
tol=2*.Machine$double.eps
)
condition$hazard_trt <- my_root$root / scale
condition$target_median_trt <- median_trt * scale
condition$hazard_subgroup <- condition$hazard_trt * condition$hr_subgroup_relative
condition
}
result <- design |>
split(1:nrow(design)) |>
purrr::map(get_hr_after, target_power_ph=target_power_ph, final_events=final_events, .progress=TRUE) |>
do.call(what=rbind)
result
}
#' @describeIn generate_subgroup calculate censoring rate from censoring proportion
#'
#' @return for cen_rate_from_cen_prop_subgroup: design data.frame with the
#' additional column random_withdrawal
#' @export
#'
#' @details cen_rate_from_cen_prop_subgroup takes the proportion of
#' censored patients from the column `censoring_prop`. This column describes
#' the proportion of patients who are censored randomly before experiencing an
#' event, without regard to administrative censoring.
#'
#' @examples
#' design <- expand.grid(
#' hazard_ctrl=0.2, # hazard under control and before treatment effect
#' hazard_trt=0.02, # hazard after onset of treatment effect
#' hazard_subgroup=0.01, # hazard in the subgroup in treatment
#' prevalence = c(0.2, 0.5), # subgroup prevalence
#' censoring_prop=c(0.1, 0.25, 0.01), # 10%, 25%, 1% random censoring
#' followup=100, # followup of 100 days
#' n_trt=50, # 50 patients treatment
#' n_ctrl=50 # 50 patients control
#' )
#' cen_rate_from_cen_prop_subgroup(design)
cen_rate_from_cen_prop_subgroup <- function(design){
rowwise_fun <- function(condition){
if(is.na(condition$hazard_trt)){
return(NA_real_)
}
if(condition$censoring_prop == 0){
condition$random_withdrawal <- 0.
return(condition)
}
# set t_max to 1-1/10000 quantile of control or treatment survival function
# whichever is later
t_max <- max(
log(10000) / condition$hazard_ctrl,
log(10000) / condition$hazard_trt
)
cumhaz_trt <- mixture_cumhaz_fun(
c(condition$prevalence, 1-condition$prevalence),
survs = list(
miniPCH::spch_fun(0, condition$hazard_subgroup),
miniPCH::spch_fun(0, condition$hazard_trt)
)
)(t_max)
cumhaz_ctrl <- miniPCH::chpch_fun(
c( 0),
c(condition$hazard_ctrl)
)(t_max)
condition$random_withdrawal <- censoring_prop_from_cumhaz(
n_trt = condition$n_trt,
n_ctrl = condition$n_ctrl,
censoring_prop = condition$censoring_prop,
cumhaz_ctrl = cumhaz_ctrl,
cumhaz_trt = cumhaz_trt,
t_max = t_max
)
condition
}
result <- design |>
split(1:nrow(design)) |>
purrr::map(rowwise_fun, .progress = TRUE) |>
do.call(what=rbind)
result
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.