Nothing
## ----setup, include=FALSE, message = FALSE, warning = FALSE-------------------
knitr::opts_chunk$set(echo = TRUE)
knitr::opts_chunk$set(comment = "#>", collapse = TRUE)
options(rmarkdown.html_vignette.check_title = FALSE) #title of doc does not match vignette title
doc.cache <- T #for cran; change to F
## -----------------------------------------------------------------------------
# Reference group mean blood pressure (Drug B)
mu_r <- setNames(96, "BP")
# Treatment group mean blood pressure (Drug A)
mu_t <- setNames(96 + 2.25, "BP")
# Common within-group standard deviation
sigma <- setNames(18, "BP")
# Lower and upper biosimilarity limits
lequi_lower <- setNames(-27, "BP")
lequi_upper <- setNames(27, "BP")
## -----------------------------------------------------------------------------
library(SimTOST)
(N_ss <- sampleSize(
power = 0.90, # Target power
alpha = 0.025, # Type-I error rate
mu_list = list("R" = mu_r, "T" = mu_t), # Means for reference and treatment groups
sigma_list = list("R" = sigma, "T" = sigma), # Standard deviations
list_comparator = list("T_vs_R" = c("R", "T")), # Comparator setup
list_lequi.tol = list("T_vs_R" = lequi_lower), # Lower equivalence limit
list_uequi.tol = list("T_vs_R" = lequi_upper), # Upper equivalence limit
dtype = "parallel", # Study design
ctype = "DOM", # Comparison type
lognorm = FALSE, # Assumes normal distribution
optimization_method = "step-by-step", # Optimization method
ncores = 1, # Single-core processing
nsim = 1000, # Number of simulations
seed = 1234 # Random seed for reproducibility
))
# Display iteration results
N_ss$table.iter
## -----------------------------------------------------------------------------
plot(N_ss)
## -----------------------------------------------------------------------------
# Adjusted sample size calculation with 20% dropout rate
(N_ss_dropout <- sampleSize(
power = 0.90, # Target power
alpha = 0.025, # Type-I error rate
mu_list = list("R" = mu_r, "T" = mu_t), # Means for reference and treatment groups
sigma_list = list("R" = sigma, "T" = sigma), # Standard deviations
list_comparator = list("T_vs_R" = c("R", "T")), # Comparator setup
list_lequi.tol = list("T_vs_R" = lequi_lower), # Lower equivalence limit
list_uequi.tol = list("T_vs_R" = lequi_upper), # Upper equivalence limit
dropout = c("R" = 0.20, "T" = 0.20), # Expected dropout rates
dtype = "parallel", # Study design
ctype = "DOM", # Comparison type
lognorm = FALSE, # Assumes normal distribution
optimization_method = "fast", # Fast optimization method
nsim = 1000, # Number of simulations
seed = 1234 # Random seed for reproducibility
))
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.