Nothing
## ----setup, include=FALSE, message = FALSE, warning = FALSE-------------------
knitr::opts_chunk$set(echo = TRUE)
knitr::opts_chunk$set(comment = "#>", collapse = TRUE)
options(rmarkdown.html_vignette.check_title = FALSE) #title of doc does not match vignette title
doc.cache <- T #for cran; change to F
## ----echo=FALSE---------------------------------------------------------------
data <- data.frame("PK measure" = c("AUCinf ($\\mu$g*h/mL)","AUClast ($\\mu$g*h/mL)","Cmax ($\\mu$g/mL)"),
"SB2" = c("38,703 $\\pm$ 11,114", "36,862 $\\pm$ 9133", "127.0 $\\pm$ 16.9"),
"EU-INF" = c("39,360 $\\pm$ 12,332", "37,022 $\\pm$ 9398", "126.2 $\\pm$ 17.9"))
kableExtra::kable_styling(kableExtra::kable(data,
col.names = c("PK measure", "SB2", "Remicade (EU)"),
caption = "Primary PK measures between test and reference product. Data represent arithmetic mean +- standard deviation."),
bootstrap_options = "striped")
## -----------------------------------------------------------------------------
library(SimTOST)
# Sample size calculation for AUCinf
(sim_AUCinf <- sampleSize(
power = 0.9, # Target power
alpha = 0.05, # Significance level
arm_names = c("SB2", "EU_Remicade"), # Names of trial arms
list_comparator = list("EMA" = c("SB2","EU_Remicade")), # Comparator configuration
mu_list = list("SB2" = 38703, "EU_Remicade" = 39360), # Mean values
sigma_list = list("SB2" = 11114, "EU_Remicade" = 12332), # Standard deviation values
list_lequi.tol = list("EMA" = 0.80), # Lower equivalence margin
list_uequi.tol = list("EMA" = 1.25), # Upper equivalence margin
nsim = 1000 # Number of stochastic simulations
))
# Sample size calculation for AUClast
(sim_AUClast <- sampleSize(
power = 0.9, # Target power
alpha = 0.05, # Significance level
arm_names = c("SB2", "EU_Remicade"), # Names of trial arms
list_comparator = list("EMA" = c("SB2", "EU_Remicade")), # Comparator configuration
mu_list = list("SB2" = 36862, "EU_Remicade" = 37022), # Mean values
sigma_list = list("SB2" = 9133, "EU_Remicade" = 9398), # Standard deviation values
list_lequi.tol = list("EMA" = 0.80), # Lower equivalence margin
list_uequi.tol = list("EMA" = 1.25), # Upper equivalence margin
nsim = 1000 # Number of stochastic simulations
))
# Sample size calculation for Cmax
(sim_Cmax <- sampleSize(
power = 0.9, # Target power
alpha = 0.05, # Significance level
arm_names = c("SB2", "EU_Remicade"), # Names of trial arms
list_comparator = list("EMA" = c("SB2", "EU_Remicade")), # Comparator configuration
mu_list = list("SB2" = 127.0, "EU_Remicade" = 126.2), # Mean values
sigma_list = list("SB2" = 16.9, "EU_Remicade" = 17.9), # Standard deviation values
list_lequi.tol = list("EMA" = 0.80), # Lower equivalence margin
list_uequi.tol = list("EMA" = 1.25), # Upper equivalence margin
nsim = 1000 # Number of stochastic simulations
))
## -----------------------------------------------------------------------------
mu_list <- list(
SB2 = c(AUCinf = 38703, AUClast = 36862, Cmax = 127.0),
EUREF = c(AUCinf = 39360, AUClast = 37022, Cmax = 126.2)
)
sigma_list <- list(
SB2 = c(AUCinf = 11114, AUClast = 9133, Cmax = 16.9),
EUREF = c(AUCinf = 12332, AUClast = 9398, Cmax = 17.9)
)
## -----------------------------------------------------------------------------
list_comparator <- list("EMA" = c("SB2", "EUREF"))
list_lequi.tol <- list("EMA" = c(AUCinf = 0.8, AUClast = 0.8, Cmax = 0.8))
list_uequi.tol <- list("EMA" = c(AUCinf = 1.25, AUClast = 1.25, Cmax = 1.25))
## -----------------------------------------------------------------------------
(N_ss <- sampleSize(power = 0.9, # target power
alpha = 0.05,
mu_list = mu_list,
sigma_list = sigma_list,
list_comparator = list_comparator,
list_lequi.tol = list_lequi.tol,
list_uequi.tol = list_uequi.tol,
dtype = "parallel",
ctype = "ROM",
vareq = TRUE,
lognorm = TRUE,
nsim = 1000,
seed = 1234))
## -----------------------------------------------------------------------------
N_ss$response
## -----------------------------------------------------------------------------
(N_mult_corr <- sampleSize(power = 0.9, # target power
alpha = 0.05,
mu_list = mu_list,
sigma_list = sigma_list,
list_comparator = list_comparator,
list_lequi.tol = list_lequi.tol,
list_uequi.tol = list_uequi.tol,
rho = 0.6,
dtype = "parallel",
ctype = "ROM",
vareq = TRUE,
lognorm = TRUE,
nsim = 1000,
seed = 1234))
## -----------------------------------------------------------------------------
(N_mp_bon <- sampleSize(
power = 0.9, # Target power
alpha = 0.05, # Significance level
mu_list = mu_list, # List of means
sigma_list = sigma_list, # List of standard deviations
list_comparator = list_comparator, # Comparator configurations
list_lequi.tol = list_lequi.tol, # Lower equivalence boundaries
list_uequi.tol = list_uequi.tol, # Upper equivalence boundaries
rho = 0.6, # Correlation between endpoints
dtype = "parallel", # Trial design type
ctype = "ROM", # Test type (Ratio of Means)
vareq = TRUE, # Assume equal variances
lognorm = TRUE, # Log-normal distribution assumption
k = c("EMA" = 1), # Demonstrate equivalence for at least 1 endpoint
adjust = "bon", # Bonferroni adjustment method
nsim = 1000, # Number of stochastic simulations
seed = 1234 # Random seed for reproducibility
))
## -----------------------------------------------------------------------------
(N_mp_sid <- sampleSize(
power = 0.9, # Target power
alpha = 0.05, # Significance level
mu_list = mu_list, # List of means
sigma_list = sigma_list, # List of standard deviations
list_comparator = list_comparator, # Comparator configurations
list_lequi.tol = list_lequi.tol, # Lower equivalence boundaries
list_uequi.tol = list_uequi.tol, # Upper equivalence boundaries
rho = 0.6, # Correlation between endpoints
dtype = "parallel", # Trial design type
ctype = "ROM", # Test type (Ratio of Means)
vareq = TRUE, # Assume equal variances
lognorm = TRUE, # Log-normal distribution assumption
k = c("EMA" = 1), # Demonstrate equivalence for at least 1 endpoint
adjust = "sid", # Sidak adjustment method
nsim = 1000, # Number of stochastic simulations
seed = 1234 # Random seed for reproducibility
))
## -----------------------------------------------------------------------------
(N_mp_k <- sampleSize(
power = 0.9, # Target power
alpha = 0.05, # Significance level
mu_list = mu_list, # List of means
sigma_list = sigma_list, # List of standard deviations
list_comparator = list_comparator, # Comparator configurations
list_lequi.tol = list_lequi.tol, # Lower equivalence boundaries
list_uequi.tol = list_uequi.tol, # Upper equivalence boundaries
rho = 0.6, # Correlation between endpoints
dtype = "parallel", # Trial design type
ctype = "ROM", # Test type (Ratio of Means)
vareq = TRUE, # Assume equal variances
lognorm = TRUE, # Log-normal distribution assumption
k = c("EMA" = 2), # Demonstrate equivalence for at least 2 endpoints
adjust = "k", # Adjustment method
nsim = 1000, # Number of stochastic simulations
seed = 1234 # Random seed for reproducibility
))
## -----------------------------------------------------------------------------
(N_mp_seq <- sampleSize(
power = 0.9, # Target power
alpha = 0.05, # Significance level
mu_list = mu_list, # List of means
sigma_list = sigma_list, # List of standard deviations
list_comparator = list_comparator, # Comparator configurations
list_lequi.tol = list_lequi.tol, # Lower equivalence boundaries
list_uequi.tol = list_uequi.tol, # Upper equivalence boundaries
rho = 0.6, # Correlation between endpoints
dtype = "parallel", # Trial design type
ctype = "ROM", # Test type (Ratio of Means)
vareq = TRUE, # Assume equal variances
lognorm = TRUE, # Log-normal distribution assumption
adjust = "seq", # Sequential adjustment method
type_y = c("AUCinf" = 2, "AUClast" = 2, "Cmax" = 1), # Endpoint types
k = c("EMA" = 1), # Demonstrate equivalence for all 3 endpoints
nsim = 1000, # Number of stochastic simulations
seed = 1234 # Random seed for reproducibility
))
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.