Nothing
## ----setup, include=FALSE, message = FALSE, warning = FALSE-------------------
knitr::opts_chunk$set(echo = TRUE)
knitr::opts_chunk$set(comment = "#>", collapse = TRUE)
options(rmarkdown.html_vignette.check_title = FALSE) #title of doc does not match vignette title
doc.cache <- T #for cran; change to F
## ----inputdata, echo=FALSE----------------------------------------------------
data <- data.frame("PK measure" = c("AUCinf ($\\mu$g*h/mL)","AUClast ($\\mu$g*h/mL)","Cmax ($\\mu$g/mL)"),
"SB2" = c("38,703 $\\pm$ 11,114", "36,862 $\\pm$ 9133", "127.0 $\\pm$ 16.9"),
"EU-INF" = c("39,360 $\\pm$ 12,332", "37,022 $\\pm$ 9398", "126.2 $\\pm$ 17.9"),
"US-INF" = c("39,270 $\\pm$ 10,064", "37,368 $\\pm$ 8332", "129.2 $\\pm$ 18.8"))
kableExtra::kable_styling(kableExtra::kable(data,
col.names = c("PK measure", "SB2", "EU-INF", "US-INF"),
caption = "Primary PK measures between test and reference product. Data represent arithmetic mean +- standard deviation."),
bootstrap_options = "striped")
## -----------------------------------------------------------------------------
# Mean values for each endpoint and arm
mu_list <- list(
SB2 = c(AUCinf = 38703, AUClast = 36862, Cmax = 127.0),
EUINF = c(AUCinf = 39360, AUClast = 37022, Cmax = 126.2),
USINF = c(AUCinf = 39270, AUClast = 37368, Cmax = 129.2)
)
# Standard deviation values for each endpoint and arm
sigma_list <- list(
SB2 = c(AUCinf = 11114, AUClast = 9133, Cmax = 16.9),
EUINF = c(AUCinf = 12332, AUClast = 9398, Cmax = 17.9),
USINF = c(AUCinf = 10064, AUClast = 8332, Cmax = 18.8)
)
## -----------------------------------------------------------------------------
# Arms to be compared
list_comparator <- list(
EMA = c("SB2", "EUINF"),
FDA = c("SB2", "USINF")
)
# Endpoints to be compared
list_y_comparator <- list(
EMA = c("AUCinf", "Cmax"),
FDA = c("AUClast", "Cmax")
)
## -----------------------------------------------------------------------------
list_lequi.tol <- list(
"EMA" = c(AUCinf = 0.8, Cmax = 0.8),
"FDA" = c(AUClast = 0.8, Cmax = 0.8)
)
list_uequi.tol <- list(
"EMA" = c(AUCinf = 1.25, Cmax = 1.25),
"FDA" = c(AUClast = 1.25, Cmax = 1.25)
)
## -----------------------------------------------------------------------------
library(SimTOST)
(N_ss <- sampleSize(power = 0.9, # Target power
alpha = 0.05, # Type I error rate
mu_list = mu_list, # Means for each endpoint and arm
sigma_list = sigma_list, # Standard deviations
list_comparator = list_comparator, # Comparator arms
list_y_comparator = list_y_comparator, # Endpoints to compare
list_lequi.tol = list_lequi.tol, # Lower equivalence boundaries
list_uequi.tol = list_uequi.tol, # Upper equivalence boundaries
dtype = "parallel", # Trial design type
ctype = "ROM", # Test type: Ratio of Means
vareq = TRUE, # Assume equal variances
lognorm = TRUE, # Log-normal distribution assumption
nsim = 1000, # Number of stochastic simulations
seed = 1234)) # Random seed for reproducibility
## -----------------------------------------------------------------------------
# Endpoints to be compared for each comparator
list_y_comparator <- list(
EMA = c("AUCinf", "AUClast", "Cmax"),
FDA = c("AUCinf", "AUClast", "Cmax")
)
# Define lower equivalence boundaries for each comparator
list_lequi.tol <- list(
EMA = c(AUCinf = 0.8, AUClast = 0.8, Cmax = 0.8),
FDA = c(AUCinf = 0.8, AUClast = 0.8, Cmax = 0.8)
)
# Define upper equivalence boundaries for each comparator
list_uequi.tol <- list(
EMA = c(AUCinf = 1.25, AUClast = 1.25, Cmax = 1.25),
FDA = c(AUCinf = 1.25, AUClast = 1.25, Cmax = 1.25)
)
## -----------------------------------------------------------------------------
(N_mp <- sampleSize(power = 0.9, # Target power
alpha = 0.05, # Type I error rate
mu_list = mu_list, # Means for each endpoint and arm
sigma_list = sigma_list, # Standard deviations
list_comparator = list_comparator, # Comparator arms
list_y_comparator = list_y_comparator, # Endpoints to compare
list_lequi.tol = list_lequi.tol, # Lower equivalence boundaries
list_uequi.tol = list_uequi.tol, # Upper equivalence boundaries
k = 2, # Number of endpoints required to demonstrate equivalence
adjust = "bon", # Bonferroni adjustment for multiple comparisons
dtype = "parallel", # Trial design type (parallel group)
ctype = "ROM", # Test type: Ratio of Means
vareq = TRUE, # Assume equal variances across arms
lognorm = TRUE, # Log-normal distribution assumption
nsim = 1000, # Number of stochastic simulations
seed = 1234)) # Random seed for reproducibility
## -----------------------------------------------------------------------------
(N_mp2 <- sampleSize(power = 0.9, # Target power
alpha = 0.05, # Type I error rate
mu_list = mu_list, # Means for each endpoint and arm
sigma_list = sigma_list, # Standard deviations
list_comparator = list_comparator, # Comparator arms
list_y_comparator = list_y_comparator, # Endpoints to compare
list_lequi.tol = list_lequi.tol, # Lower equivalence boundaries
list_uequi.tol = list_uequi.tol, # Upper equivalence boundaries
k = 2, # Number of endpoints required to demonstrate equivalence
adjust = "bon", # Bonferroni adjustment for multiple comparisons
TAR = c("SB2" = 2, "EUINF" = 1, "USINF" = 1), # Treatment allocation rates
dtype = "parallel", # Trial design type (parallel group)
ctype = "ROM", # Test type: Ratio of Means
vareq = TRUE, # Assume equal variances across arms
lognorm = TRUE, # Log-normal distribution assumption
nsim = 1000, # Number of stochastic simulations
seed = 1234)) # Random seed for reproducibility
## -----------------------------------------------------------------------------
(N_mp3 <- sampleSize(power = 0.9, # Target power
alpha = 0.05, # Type I error rate
mu_list = mu_list, # Means for each endpoint and arm
sigma_list = sigma_list, # Standard deviations
list_comparator = list_comparator, # Comparator arms
list_y_comparator = list_y_comparator, # Endpoints to compare
list_lequi.tol = list_lequi.tol, # Lower equivalence boundaries
list_uequi.tol = list_uequi.tol, # Upper equivalence boundaries
k = 2, # Number of endpoints required to demonstrate equivalence
adjust = "bon", # Bonferroni adjustment for multiple comparisons
TAR = c("SB2" = 2, "EUINF" = 1, "USINF" = 1), # Treatment allocation rates
dropout = c("SB2" = 0.20, "EUINF" = 0.20, "USINF" = 0.20), # Expected dropout rates
dtype = "parallel", # Trial design type (parallel group)
ctype = "ROM", # Test type: Ratio of Means
vareq = TRUE, # Assume equal variances across arms
lognorm = TRUE, # Log-normal distribution assumption
nsim = 1000, # Number of stochastic simulations
seed = 1234)) # Random seed for reproducibility
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.