Nothing
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
context("basic tests for CRAN")
test_that("create DataFrame from list or data.frame", {
tryCatch(checkJavaVersion(),
error = function(e) { skip("error on Java check") },
warning = function(e) { skip("warning on Java check") })
sparkR.session(master = sparkRTestMaster, enableHiveSupport = FALSE,
sparkConfig = sparkRTestConfig)
i <- 4
df <- createDataFrame(data.frame(dummy = 1:i))
expect_equal(count(df), i)
l <- list(list(a = 1, b = 2), list(a = 3, b = 4))
df <- createDataFrame(l)
expect_equal(columns(df), c("a", "b"))
a <- 1:3
b <- c("a", "b", "c")
ldf <- data.frame(a, b)
df <- createDataFrame(ldf)
expect_equal(columns(df), c("a", "b"))
expect_equal(dtypes(df), list(c("a", "int"), c("b", "string")))
expect_equal(count(df), 3)
ldf2 <- collect(df)
expect_equal(ldf$a, ldf2$a)
mtcarsdf <- createDataFrame(mtcars)
expect_equivalent(collect(mtcarsdf), mtcars)
bytes <- as.raw(c(1, 2, 3))
df <- createDataFrame(list(list(bytes)))
expect_equal(collect(df)[[1]][[1]], bytes)
sparkR.session.stop()
})
test_that("spark.glm and predict", {
tryCatch(checkJavaVersion(),
error = function(e) { skip("error on Java check") },
warning = function(e) { skip("warning on Java check") })
sparkR.session(master = sparkRTestMaster, enableHiveSupport = FALSE,
sparkConfig = sparkRTestConfig)
training <- suppressWarnings(createDataFrame(iris))
# gaussian family
model <- spark.glm(training, Sepal_Width ~ Sepal_Length + Species)
prediction <- predict(model, training)
expect_equal(typeof(take(select(prediction, "prediction"), 1)$prediction), "double")
vals <- collect(select(prediction, "prediction"))
rVals <- predict(glm(Sepal.Width ~ Sepal.Length + Species, data = iris), iris)
expect_true(all(abs(rVals - vals) < 1e-6), rVals - vals)
# Gamma family
x <- runif(100, -1, 1)
y <- rgamma(100, rate = 10 / exp(0.5 + 1.2 * x), shape = 10)
df <- as.DataFrame(as.data.frame(list(x = x, y = y)))
model <- glm(y ~ x, family = Gamma, df)
out <- capture.output(print(summary(model)))
expect_true(any(grepl("Dispersion parameter for gamma family", out)))
# tweedie family
model <- spark.glm(training, Sepal_Width ~ Sepal_Length + Species,
family = "tweedie", var.power = 1.2, link.power = 0.0)
prediction <- predict(model, training)
expect_equal(typeof(take(select(prediction, "prediction"), 1)$prediction), "double")
vals <- collect(select(prediction, "prediction"))
# manual calculation of the R predicted values to avoid dependence on statmod
#' library(statmod)
#' rModel <- glm(Sepal.Width ~ Sepal.Length + Species, data = iris,
#' family = tweedie(var.power = 1.2, link.power = 0.0))
#' print(coef(rModel))
rCoef <- c(0.6455409, 0.1169143, -0.3224752, -0.3282174)
rVals <- exp(as.numeric(model.matrix(Sepal.Width ~ Sepal.Length + Species,
data = iris) %*% rCoef))
expect_true(all(abs(rVals - vals) < 1e-5), rVals - vals)
sparkR.session.stop()
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.