SPF.BinCont | R Documentation |
The function SPF.BinCont
computes the surrogate predictive function (SPF), i.e., the P[\Delta T | \Delta S \in I_{ab}]
in the single-trial setting within the causal-inference framework when the surrogate endpoint is continuous (normally distributed) and the true endpoint is a binary outcome. For details, see Alonso et al. (2024).
SPF.BinCont(x, a, b)
x |
A fitted object of class |
a |
The lower interval |
b |
The upper interval |
An object of class SPF.BinCont
with important or relevant components:
a |
The lower interval |
b |
The upper interval |
r_min1_min1 |
The vector of |
r_0_min1 |
The vector of |
r_1_min1 |
The vector of |
r_min1_0 |
The vector of |
r_0_0 |
The vector of |
r_1_0 |
The vector of |
r_min1_1 |
The vector of |
r_0_1 |
The vector of |
r_1_1 |
The vector of |
P_DT_0_DS_0 |
The vector of |
P_DT_psi_DS_max |
The vector of |
best.pred.min1 |
The vector of |
best.pred.0 |
The vector of |
best.pred.1 |
The vector of |
Fenny Ong, Wim Van der Elst, Ariel Alonso, and Geert Molenberghs
Alonso, A., Ong, F., Van der Elst, W., Molenberghs, G., & Callegaro, A. (2024). Assessing a continuous surrogate predictive value for a binary true endpoint based on causal inference and information theory in vaccine trial.
ICA.BinCont
, ICA.BinCont.BS
, plot.SPF.BinCont
## Not run: # Time consuming code part
data(Schizo)
fit.ica <- ICA.BinCont.BS(Dataset = Schizo, Surr = BPRS, True = PANSS_Bin, nb = 10,
Theta.S_0=c(-10,-5,5,10,10,10,10,10), Theta.S_1=c(-10,-5,5,10,10,10,10,10),
Treat=Treat, M=50, Seed=1)
fit.spf <- SPF.BinCont(fit.ica, a=-5, b=5)
summary(fit.spf)
plot(fit.spf)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.