View source: R/plot.Fano.BinBin.R
plot.Fano.BinBin | R Documentation |
R^2_{HL}
either as a density or as function of \pi_{10}
in the setting where both S
and T
are binary endpointsThe function plot.Fano.BinBin
plots the distribution of R^2_{HL}
which is fully identifiable for given values of \pi_{10}
. See Details below.
## S3 method for class 'Fano.BinBin'
plot(x,Type="Density",Xlab.R2_HL,main.R2_HL,
ylab="density",Par=par(mfrow=c(1,1),oma=c(0,0,0,0),mar=c(5.1,4.1,4.1,2.1)),
Cex.Legend=1,Cex.Position="top", lwd=3,linety=c(5,6,7),color=c(8,9,3),...)
x |
An object of class |
Type |
The type of plot that is produced. When |
Xlab.R2_HL |
The label of the X-axis when density plots or histograms are produced. |
main.R2_HL |
Title of the density plot or histogram. |
ylab |
The label of the Y-axis when density plots or histograms are produced. Default |
Par |
Graphical parameters for the plot. Default |
Cex.Legend |
The size of the legend. Default |
Cex.Position |
The position of the legend. Default |
lwd |
The line width for the density plot . Default |
linety |
The line types corresponding to each level of |
color |
The color corresponding to each level of |
... |
Other arguments to be passed. |
Values for \pi_{10}
have to be uniformly sampled from the interval [0,\min(\pi_{1\cdot},\pi_{\cdot0})]
. Any sampled value for \pi_{10}
will fully determine the bivariate distribution of potential outcomes for the true endpoint.
The vector \bold{\pi_{km}}
fully determines R^2_{HL}
.
An object of class Fano.BinBin
with components,
R2_HL |
The sampled values for |
H_Delta_T |
The sampled values for |
minpi10 |
The minimum value for |
maxpi10 |
The maximum value for |
samplepi10 |
The sampled value for |
delta |
The specified vector of upper bounds for the prediction errors. |
uncertainty |
Indexes the sampling of |
pi_00 |
The sampled values for |
pi_11 |
The sampled values for |
pi_01 |
The sampled values for |
pi_10 |
The sampled values for |
Paul Meyvisch, Wim Van der Elst, Ariel Alonso
Alonso, A., Van der Elst, W., & Molenberghs, G. (2014). Validation of surrogate endpoints: the binary-binary setting from a causal inference perspective.
Fano.BinBin
# Conduct the analysis assuming no montonicity
# for the true endpoint, using a range of
# upper bounds for prediction errors
FANO<-Fano.BinBin(pi1_ = 0.5951 , pi_1 = 0.7745,
fano_delta=c(0.05, 0.1, 0.2), M=1000)
plot(FANO, Type="Scatter",color=c(3,4,5),Cex.Position="bottom")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.