plot MaxEntSPF BinBin | R Documentation |
Plots the sensitivity-based (Alonso et al., 2015a) and maximum entropy based (Alonso et al., 2015b) surrogate predictive function (SPF), i.e., r(i,j)=P(\Delta T=i|\Delta S=j)
, in the setting where both S
and T
are binary endpoints. For example, r(-1,1)
quantifies the probability that the treatment has a negative effect on the true endpoint (\Delta T=-1
) given that it has a positive effect on the surrogate (\Delta S=1
).
## S3 method for class 'MaxEntSPF.BinBin'
plot(x, SPF.Fit, Type="All.Histograms", Col="grey", ...)
x |
A fitted object of class |
SPF.Fit |
A fitted object of class |
Type |
The type of plot that is requested. Possible choices are: |
Col |
The color of the bins or lines when histograms or density plots are requested. Default |
... |
Other arguments to be passed to the |
Wim Van der Elst, Ariel Alonso, & Geert Molenberghs
Alonso, A., Van der Elst, W., & Molenberghs, G. (2015a). Assessing a surrogate effect predictive value in a causal inference framework.
Alonso, A., & Van der Elst, W. (2015b). A maximum-entropy approach for the evluation of surrogate endpoints based on causal inference.
SPF.BinBin
# Sensitivity-based ICA results using ICA.BinBin.Grid.Sample
ICA <- ICA.BinBin.Grid.Sample(pi1_1_=0.341, pi0_1_=0.119, pi1_0_=0.254,
pi_1_1=0.686, pi_1_0=0.088, pi_0_1=0.078, Seed=1,
Monotonicity=c("No"), M=5000)
# Sensitivity-based SPF
SPFSens <- SPF.BinBin(ICA)
# Maximum-entropy based SPF
SPFMaxEnt <- MaxEntSPFBinBin(pi1_1_=0.341, pi0_1_=0.119, pi1_0_=0.254,
pi_1_1=0.686, pi_1_0=0.088, pi_0_1=0.078)
# Plot results
plot(x=SPFMaxEnt, SPF.Fit=SPFSens)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.