Nothing
empty_directory <- function(x) {
unlink(x, recursive = TRUE, force = TRUE)
dir.create(x)
}
test_with_dir <- function(desc, ...) {
withr <- TAD:::load_package("withr")
new <- tempfile()
empty_directory(new)
withr$with_dir(
new = new,
code = {
tmp <- capture.output(
testthat::test_that(desc = desc, ...)
)
}
)
invisible(tmp)
}
datasets <- list(
good1 = list(
params = list(
weights = TAD::AB[, 5:102],
weights_factor = TAD::AB[, c("Year", "Plot", "Treatment", "Bloc")],
trait_data = log(TAD::trait[["SLA"]]),
aggregation_factor_name = c("Year", "Bloc"),
statistics_factor_name = c("Treatment"),
regenerate_abundance_df = TRUE,
regenerate_weighted_moments_df = TRUE,
regenerate_stat_per_obs_df = TRUE,
regenerate_stat_per_rand_df = TRUE,
randomization_number = 20,
seed = 1312,
significativity_threshold = c(0.05, 0.95),
lin_mod = "lm",
slope_distance = TAD::CONSTANTS$SKEW_UNIFORM_SLOPE_DISTANCE,
intercept_distance = TAD::CONSTANTS$SKEW_UNIFORM_INTERCEPT_DISTANCE,
abundance_file = NULL,
weighted_moments_file = NULL,
stat_per_obs_file = NULL,
stat_per_rand_file = NULL,
stat_skr_param_file = NULL
),
weights = data.frame(sp1 = c(1, 0), sp2 = c(2, 8), sp3 = c(0, 2)),
aggreg_factor = data.frame(plot = c("plot1", "plot2")),
randomization_number = 3,
generate_random_matrix_result = list(
data.frame(
number = as.integer(c(0, 0, 1, 1, 2, 2, 3, 3)),
index1 = as.numeric(c(1, 0, 1, 0, 2, 0, 2, 0)),
index2 = as.numeric(c(2, 8, 2, 2, 1, 2, 1, 2)),
index3 = as.numeric(c(0, 2, 0, 8, 0, 8, 0, 8))
), data.frame(
number = as.integer(c(0, 0, 1, 1, 2, 2, 3, 3)),
index1 = as.numeric(c(1, 0, 2, 0, 1, 0, 1, 0)),
index2 = as.numeric(c(2, 8, 1, 8, 2, 8, 2, 2)),
index3 = as.numeric(c(0, 2, 0, 2, 0, 2, 0, 8))
), data.frame(
number = as.integer(c(0, 0, 1, 1, 2, 2, 3, 3)),
index1 = as.numeric(c(1, 0, 1, 0, 1, 0, 1, 0)),
index2 = as.numeric(c(2, 8, 2, 8, 2, 8, 2, 2)),
index3 = as.numeric(c(0, 2, 0, 2, 0, 2, 0, 8))
), data.frame(
number = as.integer(c(0, 0, 1, 1, 2, 2, 3, 3)),
index1 = as.numeric(c(1, 0, 2, 0, 1, 0, 2, 0)),
index2 = as.numeric(c(2, 8, 1, 8, 2, 8, 1, 2)),
index3 = as.numeric(c(0, 2, 0, 2, 0, 2, 0, 8))
), data.frame(
number = as.integer(c(0, 0, 1, 1, 2, 2, 3, 3)),
index1 = as.numeric(c(1, 0, 2, 0, 2, 0, 2, 0)),
index2 = as.numeric(c(2, 8, 1, 8, 1, 2, 1, 2)),
index3 = as.numeric(c(0, 2, 0, 2, 0, 8, 0, 8))
), data.frame(
number = as.integer(c(0, 0, 1, 1, 2, 2, 3, 3)),
index1 = as.numeric(c(1, 0, 1, 0, 1, 0, 2, 0)),
index2 = as.numeric(c(2, 8, 2, 8, 2, 2, 1, 2)),
index3 = as.numeric(c(0, 2, 0, 2, 0, 8, 0, 8))
), data.frame(
number = as.integer(c(0, 0, 1, 1, 2, 2, 3, 3)),
index1 = as.numeric(c(1, 0, 2, 0, 1, 0, 1, 0)),
index2 = as.numeric(c(2, 8, 1, 8, 2, 2, 2, 2)),
index3 = as.numeric(c(0, 2, 0, 2, 0, 8, 0, 8))
), data.frame(
number = as.integer(c(0, 0, 1, 1, 2, 2, 3, 3)),
index1 = as.numeric(c(1, 0, 2, 0, 2, 0, 2, 0)),
index2 = as.numeric(c(2, 8, 1, 2, 1, 8, 1, 8)),
index3 = as.numeric(c(0, 2, 0, 8, 0, 2, 0, 2))
), data.frame(
number = as.integer(c(0, 0, 1, 1, 2, 2, 3, 3)),
index1 = as.numeric(c(1, 0, 2, 0, 1, 0, 1, 0)),
index2 = as.numeric(c(2, 8, 1, 8, 2, 8, 2, 8)),
index3 = as.numeric(c(0, 2, 0, 2, 0, 2, 0, 2))
), data.frame(
number = as.integer(c(0, 0, 1, 1, 2, 2, 3, 3)),
index1 = as.numeric(c(1, 0, 1, 0, 1, 0, 1, 0)),
index2 = as.numeric(c(2, 8, 2, 8, 2, 8, 2, 8)),
index3 = as.numeric(c(0, 2, 0, 2, 0, 2, 0, 2))
)
)
),
bad1 = list(
weights1 = data.frame(sp1 = c(1, 0), sp2 = c(2, 8), sp3 = c(0, 2)),
aggreg_factor = data.frame(plot = c("plot1"))
),
good2 = list(
param = list(),
results = list(
abundance_df = TAD::abundance_dataframe,
filtering = TAD::filtered_abundances,
weighted_moments_dataframe = TAD::weighted_moments_dataframe,
stat_per_obs_dataframe = TAD::stat_per_obs_dataframe,
stat_per_rand_dataframe = TAD::stat_per_rand_dataframe,
skr_ses_dataframe = TAD::skr_ses_dataframe
)
)
)
get_bad_parameters <- function(...) {
bad_params <- list(...)
good_params <- datasets$good1$params
for (bad_param in names(bad_params)) {
good_params[[bad_param]] <- bad_params[[bad_param]]
}
return(good_params)
}
datasets$good2$param$abundance_df <- list(
weights = (weights <- TAD::AB[, 5:102]),
abundance_file = (abundance_file <- NULL),
weights_factor = (
weights_factor <- TAD::AB[, c("Year", "Plot", "Treatment", "Bloc")]
),
aggregation_factor_name = c("Year", "Bloc"),
regenerate_abundance_df = TRUE,
randomization_number = (randomization_number <- 20),
seed = 1312
)
datasets$good2$param$filtering <- list(
abundance_df = datasets$good2$results$abundance_df,
weights = weights,
weights_factor = weights_factor,
trait_data = log(TAD::trait[["SLA"]])
)
datasets$good2$param$weighted_moments <- list(
weights_factor = datasets$good2$results$filtering$weights_factor,
trait_data = datasets$good2$results$filtering$trait_data,
weighted_moments_file = NULL,
regenerate_weighted_moments_df = TRUE,
abundance_df = datasets$good2$results$filtering$abundance_df,
randomization_number = randomization_number,
slope_distance = TAD::CONSTANTS$SKEW_UNIFORM_SLOPE_DISTANCE,
intercept_distance = TAD::CONSTANTS$SKEW_UNIFORM_INTERCEPT_DISTANCE
)
datasets$good2$param$stat_per_obs_dataframe <- list(
weights_factor = datasets$good2$results$filtering$weights_factor,
stat_per_obs_file = NULL,
regenerate_stat_per_obs_df = TRUE,
weighted_moments = datasets$good2$results$weighted_moments,
randomization_number = randomization_number,
significativity_threshold = (significativity_threshold <- c(0.05, 0.95))
)
datasets$good2$param$stat_per_rand_dataframe <- list(
weights = datasets$good2$results$filtering$weights,
stat_per_rand_file = NULL,
regenerate_stat_per_rand_df = TRUE,
statistics_factor_name = (statistics_factor_name <- c("Treatment")),
weights_factor = datasets$good2$results$filtering$weights_factor,
randomization_number = randomization_number,
weighted_moments = datasets$good2$results$weighted_moments,
abundance_df = datasets$good2$results$filtering$abundance_df,
lin_mod = "lm"
)
datasets$good2$param$skr_ses_dataframe <- list(
statistics_factor_name = statistics_factor_name,
significativity_threshold = significativity_threshold,
skr_param = datasets$good2$results$stat_per_rand_dataframe,
stat_skr_param_file = NULL
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.