Nothing
#Finds and returns the fittest MAS
#maxorder from the sma function of smooth package
#' Automatic prediction with moving average smoothing
#'
#' The function uses an automatically produced moving average smoother as base
#' for predicting and returning the next n consecutive values of the provided
#' univariate time series using an also automatically fitted model
#' (\code{\link{ets}}/\code{\link{stlf}} or \code{\link{arima}}). It also
#' evaluates the fitness and prediction accuracy of the produced model.
#'
#' The function produces a moving average smoother of \code{timeseries} with
#' order \code{order} and uses it as base for model fitting and prediction. If
#' \code{model="arima"}, an arima model is used and automatically fitted using
#' the \code{\link[forecast]{auto.arima}} function. If \code{model="ets"}, the
#' function fits an \code{[forecast]\link{ets}} model (if \code{timeseries} is
#' non-seasonal or the seasonal period is 12 or less) or
#' \code{\link[forecast]{stlf}} model (if the seasonal period is 13 or more).
#'
#' For producing the prediction of the next \code{h} consecutive values of the
#' provided univariate time series, the function \code{\link{mas.rev}} is used.
#'
#' If \code{order} is \code{NULL}, it is automatically selected. For that, a
#' set with candidate models constructed for moving average smoothers of orders
#' from \code{minorder} to \code{maxorder} is generated. The default value of
#' \code{maxorder} is set based on code from the \code{sma} function of
#' \code{smooth} package. The value option of \code{order} which generate the
#' best ranked candidate model acoording to the criteria in \code{rank.by} is
#' selected.
#'
#' The ranking criteria in \code{rank.by} may be set as a prediction error
#' measure (such as \code{\link{MSE}}, \code{\link{NMSE}}, \code{\link{MAPE}},
#' \code{\link{sMAPE}} or \code{\link{MAXError}}), or as a fitness criteria
#' (such as \code{\link{AIC}}, \code{\link{AICc}}, \code{\link{BIC}} or
#' \code{\link{logLik}}). In the former case, the candidate models are used for
#' time series prediction and the error measures are calculated by means of a
#' cross-validation process. In the latter case, the candidate models are
#' fitted and fitness criteria are calculated based on all observations in
#' \code{timeseries}.
#'
#' If \code{rank.by} is set as \code{"errors"} or \code{"fitness"}, the
#' candidate models are ranked by all the mentioned prediction error measures
#' or fitness criteria, respectively. The wheight of the ranking criteria is
#' equally distributed. In this case, a \code{rank.position.sum} criterion is
#' produced for ranking the candidate models. The \code{rank.position.sum}
#' criterion is calculated as the sum of the rank positions of a model (1 = 1st
#' position = better ranked model, 2 = 2nd position, etc.) on each calculated
#' ranking criteria.
#'
#' @param timeseries A vector or univariate time series.
#' @param timeseries.test A vector or univariate time series containing a
#' continuation for \code{timeseries} with actual values. It is used as a
#' testing set and base for calculation of prediction error measures. Ignored
#' if \code{NULL}.
#' @param h Number of consecutive values of the time series to be predicted. If
#' \code{h} is \code{NULL}, the number of consecutive values to be predicted is
#' assumed to be equal to the length of \code{timeseries.test}. Required when
#' \code{timeseries.test} is \code{NULL}.
#' @param order A numeric integer value corresponding to the order of moving
#' average smoother to be produced. If \code{NULL}, the order of the moving
#' average smoother returned by the function is automatically selected within
#' the interval \code{minorder:maxorder}. See 'Details'.
#' @param minorder A numeric integer value corresponding to the minimum order
#' of candidate moving average smoothers to be produced and evaluated. Ignored
#' if \code{order} is provided. See 'Details'.
#' @param maxorder A numeric integer value corresponding to the maximal order
#' of candidate moving average smoothers to be produced and evaluated. Ignored
#' if \code{order} is provided. See 'Details'.
#' @param model Character string. Indicates which model is to be used for
#' fitting and prediction of the moving average smoothed series.
#' @param na.action A function for treating missing values in \code{timeseries}
#' and \code{timeseries.test}. The default function is \code{\link[stats]{na.omit}},
#' which omits any missing values found in \code{timeseries} or
#' \code{timeseries.test}.
#' @param level Confidence level for prediction intervals. See the
#' \code{\link[forecast]{forecast}} function of the \code{forecast} package.
#' @param rank.by Character string. Criteria used for ranking candidate models
#' generated. See 'Details'.
#' @param ... Additional arguments passed to the modeling functions.
#' @return A list with components: \item{model}{A list containing information
#' about the best evaluated model.} \item{order}{The order of moving average
#' smoother provided or automatically selected.} \item{ma}{The simple moving
#' average smoother of order \code{order} of the provided time series.}
#' \item{AICc}{Numeric value of the computed AICc criterion of the best
#' evaluated model.} \item{AIC}{Numeric value of the computed AIC criterion of
#' the best evaluated model.} \item{BIC}{Numeric value of the computed BIC
#' criterion of the best evaluated model.} \item{logLik}{Numeric value of the
#' computed log-likelihood of the best evaluated model.} \item{pred}{A list
#' with the components \code{mean}, \code{lower} and \code{upper}, containing
#' the predictions of the best evaluated model and the lower and upper limits
#' for prediction intervals, respectively. All components are time series. See
#' the \code{\link[forecast]{forecast}} function in the \code{forecast}
#' package.} \item{MSE}{Numeric value of the resulting MSE error of prediction.
#' Require \code{timeseries.test}.} \item{NMSE}{Numeric value of the resulting
#' NMSE error of prediction. Require \code{timeseries.test}.}
#' \item{MAPE}{Numeric value of the resulting MAPE error of prediction. Require
#' \code{timeseries.test}.} \item{sMAPE}{Numeric value of the resulting sMAPE
#' error of prediction. Require \code{timeseries.test}.}
#' \item{MaxError}{Numeric value of the maximal error of prediction. Require
#' \code{timeseries.test}.} \item{rank.val}{Data.frame with the fitness or
#' prediction accuracy criteria computed for all candidate models ranked by
#' \code{rank.by}. It has the attribute \code{"ranked.models"}, which is a list
#' of objects containing all the candidate models, also ranked by
#' \code{rank.by}.} \item{rank.by}{Ranking criteria used for ranking candidate
#' models and producing \code{rank.val}.}
#' @author Rebecca Pontes Salles
#' @seealso \code{\link{fittestEMD}}, \code{\link{fittestWavelet}}
#' @references R.J. Hyndman and G. Athanasopoulos, 2013, Forecasting:
#' principles and practice. OTexts.
#'
#' R.H. Shumway and D.S. Stoffer, 2010, Time Series Analysis and Its
#' Applications: With R Examples. 3rd ed. 2011 edition ed. New York, Springer.
#' @keywords moving average smoother automatic fitting adjustment prediction
#' evaluation criterion errors time series
#' @examples
#'
#' data(CATS)
#' \donttest{
#' fMAS <- fittestMAS(CATS[,1],h=20,model="arima")
#'
#' #automatically selected order of moving average
#' mas.order <- fMAS$order
#' }
#'
#' @export fittestMAS
fittestMAS <-
function(timeseries, timeseries.test=NULL, h=NULL, order=NULL, minorder=1, maxorder=min(36,length(ts(na.action(timeseries)))/2),
model=c("ets","arima"), level=0.95, na.action=stats::na.omit,
rank.by=c("MSE","NMSE","MAPE","sMAPE","MaxError","AIC","AICc","BIC","logLik","errors","fitness"),...){
#catch parameter errors
if(is.null(timeseries)) stop("timeseries is required and must have positive length")
if(is.null(timeseries.test) & is.null(h)) stop("the number of values to be predicted is unknown, provide either timeseries.test or h")
#prepare the training time series
ts <- ts(na.action(timeseries))
nobs <- length(ts)
#prepare the test time series (if present) and set the prediction horizon
n.ahead <- ts.test <- NULL
if(!is.null(timeseries.test)) {
ts.test <- ts(na.action(timeseries.test),start=(nobs+1))
n.ahead <- length(ts.test)
if(!is.null(h)){
if(h < n.ahead){
ts.test <- utils::head(ts.test,h)
n.ahead <- h
}
}
}
else n.ahead <- h
# evaluate choice of model for prediction
modelType <- match.arg(model)
# evaluate choices of rank.by
rank.by <- match.arg(rank.by)
if(rank.by == "fitness") rank.by <- c("AIC","AICc","BIC","logLik")
else if(rank.by == "errors") rank.by <- c("MSE","NMSE","MAPE","sMAPE","MaxError")
#transformation function (moving average smoothing)
MAS <- TSPred::mas
#reverse transformation function (moving average smoothing)
revMAS <- TSPred::mas.rev
#transforms series, optimize Model given a set of initial parameters and predicts n.ahead observations
optim.model <- function(timeseries,order,modelType,n.ahead,level,...){
#moving average smoothing transformation
sma <- tryCatch( MAS(timeseries,order) ,
error=function(c) NULL)
if(is.null(sma)) return(NULL)
#require(forecast)
if(modelType=="ets") {
fc <- forecast::forecast(sma, h=n.ahead, level=level,...)
}
else if(modelType=="arima"){
#Best fit ARIMA
fc <- forecast::forecast(forecast::auto.arima(sma,...), h=n.ahead, level=level)
}
return(fc)
}
#computes quality measures acoording to rank.by
fitness.criteria <- function(model){
#computes quality measures acoording to rank.by
AIC <- model$aic
BIC <- model$bic
AICc <- model$aicc
ll <- model$loglik
return(data.frame(AICc=AICc,AIC=AIC,BIC=BIC,logLik=ll))
}
#computes predictions (reverse transforms predictions), and prediction error measures (if timeseries.test is provided)
pred.criteria <- function(fc,i.n.ahead,ts.test,ts,ord){
#computes predictions using the candidate model
prediction <- list(mean=fc$mean,lower=fc$lower,upper=fc$upper)
xinit <- utils::tail(as.numeric(ts),ord-1)
prediction$mean <- revMAS(prediction$mean,xinit,ord,addinit=FALSE)
attributes(prediction$mean) <- attributes(fc$mean)
prediction$lower <- revMAS(prediction$lower,xinit,ord,addinit=FALSE)
attributes(prediction$lower) <- attributes(fc$lower)
prediction$upper <- revMAS(prediction$upper,xinit,ord,addinit=FALSE)
attributes(prediction$upper) <- attributes(fc$upper)
pred.mean <- ts(prediction$mean,start=i.n.ahead)
#computes prediction error measures if ts.test is provided
if(!is.null(ts.test)) {
MSE <- TSPred::MSE(ts.test, pred.mean)
NMSE <- TSPred::NMSE(ts.test, pred.mean, ts)
MAPE <- TSPred::MAPE(ts.test, pred.mean)
sMAPE <- TSPred::sMAPE(ts.test, pred.mean)
MaxError <- TSPred::MAXError(ts.test, pred.mean)
return(list(pred=prediction,errors=data.frame(MSE=MSE,NMSE=NMSE,MAPE=MAPE,sMAPE=sMAPE,MaxError=MaxError)))
}
return(list(pred=prediction))
}
#ranks candidate models
ranking.models <- function(rank,rank.by,models){
rownames(rank) <- NULL
#create ranking criteria based on all measures referenced by rank.by
criteria <- rank[ , (names(rank) %in% rank.by), drop = FALSE]
if("logLik" %in% names(criteria)) criteria["logLik"] <- -criteria["logLik"]
TSPredC <- 0
for(c in names(criteria)) TSPredC <- TSPredC + rank(criteria[c])
names(TSPredC) <- NULL
#ranking the candidate models based on all measures referenced by rank.by
rank <- cbind(rank,rank.position.sum=TSPredC)
rank <- rank[with(rank,order(rank.position.sum)),]
#candidate models are ranked and included as attribute of rank dataframe
models <- models[rank$ModelId]
attr(rank,"ranked.models") <- models
return(rank)
}
#if parameter is not provided, the function finds the best option among {...}
rank <- NULL
if(is.null(order)){
# creates the Validation series for parameter optimization
ts.val <- utils::tail(ts,n.ahead)
ts.tmp <- utils::head(ts,nobs-n.ahead)
#if rank.by considers fitness measures, parameter optimization uses only and all the training series
if(any(c("AIC","AICc","BIC","logLik") %in% rank.by)) ts.tmp <- ts
#initial options of pars
pars.opt <- c(minorder:maxorder)
#produces candidate models and measures in order to select "best" parameters
models <- list()
for(par in pars.opt){
#generates and optimizes candidate Model based on initial parameter values
fc <- optim.model(ts.tmp,order=par,modelType=modelType,n.ahead=n.ahead,level=level,...)
if(is.null(fc)) next
model <- fc$model
#creates candidate model id and saves it in the list models
ModelId <- paste(paste("MAOrd:",par),modelType,sep="_")
models[[ModelId]] <- model
if(any(c("AIC","AICc","BIC","logLik") %in% rank.by)){
#computes fitness measures and returns a dataframe with them
rank.measures <- fitness.criteria(model)
}
else if(any(c("MSE","NMSE","MAPE","sMAPE","MaxError") %in% rank.by)){
#computes predictions and prediction error measures
rank.measures <- pred.criteria(fc,length(ts.tmp)+1,ts.val,ts.tmp,par)$errors
}
#combine results of the candidate models in the dataframe rank
rank <- rbind(rank, data.frame(ModelId=ModelId,order=par,rank.measures))
}
#ranking the candidate models based on all measures referenced by rank.by
#also candidate models (objects) are ranked and included as attribute of rank dataframe
rank <- ranking.models(rank,rank.by,models)
#if rank.by is fitness
order.optim <- rank[1,]$order
}
else{
order.optim <- order
}
#gets previously optimized Model based on optim parameter values
#if a ranking based on fitness measures was performed, the whole time series was used for training and the model generated can be reused
if(any(c("AIC","AICc","BIC","logLik") %in% rank.by) & !is.null(rank)){
model <- attr(rank,"ranked.models")[[1]]
fc <- forecast::forecast(model, h=n.ahead, level=level)
}
#generates and optimizes Model based on optim parameter values
else{
fc <- optim.model(ts,order=order.optim,modelType=modelType,n.ahead=n.ahead,level=level,...)
model <- fc$model
}
#moving average smoothed time series
ma <- MAS(ts,order.optim)
#computes fitness measures and returns a dataframe with them
fit.measures <- fitness.criteria(model)
fit.measures <- lapply(fit.measures,identity) #transforms to list
#computes predictions, and prediction error measures (if timeseries.test is provided)
pred.measures <- pred.criteria(fc,(nobs+1),ts.test,ts,order.optim)
#predictions
prediction <- pred.measures$pred
#error measures into list
errors.measures <- switch(is.null(pred.measures$errors)+1,lapply(pred.measures$errors,identity),NULL)
#append results in a list
results <- c( list(model=model), order=order.optim, list(ma=ma), fit.measures, list(pred=prediction), errors.measures )
if(!is.null(rank) ) results <- c(results, list(rank.val=rank), rank.by=rank.by)
return(results)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.