threewayanova: Three-way ANOVA

Description Usage Arguments Value Author(s) References Examples

Description

Computation of three-way Analysis of Variance (ANOVA).

Usage

1
threewayanova(Y, n, m, p)

Arguments

Y

Matrix (or data.frame coerced to a matrix) of order (n x mp) containing the matricized array (frontal slices)

n

Number of A-mode entities

m

Number of B-mode entities

p

Number of C-mode entities

Value

A list including the following components:

SS.a

Main effect for the A-mode

SS.b

Main effect for the B-mode

SS.c

Main effect for the C-mode

SS.ab

Second order interaction (A- and B-mode)

SS.bc

Second order interaction (B- and C-mode)

SS.ac

Second order interaction (A- and C-mode)

SS.abc

Residual sum of squares after subtraction of second order interactions

Author(s)

Maria Antonietta Del Ferraro mariaantonietta.delferraro@yahoo.it
Henk A.L. Kiers h.a.l.kiers@rug.nl
Paolo Giordani paolo.giordani@uniroma1.it

References

H.A.L. Kiers \& I. Van Mechelen (2001). Three-way component analysis: principles and illustrative applications. Psychological Methods 6:84–110.

Examples

1
2
3
data(TV)
TVdata=TV[[1]]
anova3 <- threewayanova(TVdata, 16, 15, 30)

Example output

Total ssq after subtraction of grand mean  =  100468.143194444
SS_a        =    4735.363194 ( 4.71 )
SS_b        =    17165.186944 ( 17.09 )
SS_c        =    5050.172361 ( 5.03 )
SS_ab       =    26446.759722 ( 26.32 )
SS_ac       =    4909.407639 ( 4.89 )
SS_bc       =    16966.346389 ( 16.89 )
SS_abc      =    25194.906944 ( 25.08 )

ThreeWay documentation built on May 2, 2019, 9:20 a.m.