View source: R/WilcoxonAnalyze.R
Wilcoxon_analyze | R Documentation |
This function performs differential gene expression analysis using Wilcoxon rank-sum tests. It reads tumor and normal expression data, performs TMM normalization using 'edgeR', and uses Wilcoxon rank-sum tests to identify differentially expressed genes.
Wilcoxon_analyze(
tumor_file,
normal_file,
output_file,
logFC_threshold = 2.5,
fdr_threshold = 0.05
)
tumor_file |
Path to the tumor data file (RDS format). |
normal_file |
Path to the normal data file (RDS format). |
output_file |
Path to save the output DEG data (RDS format). |
logFC_threshold |
Threshold for log fold change for marking up/down-regulated genes. |
fdr_threshold |
Threshold for FDR for filtering significant genes. |
A data frame of differential expression results.
Li, Y., Ge, X., Peng, F., Li, W., & Li, J. J. (2022). Exaggerated False Positives by Popular Differential Expression Methods When Analyzing Human Population Samples. Genome Biology, 23(1), 79. DOI: https://doi.org/10.1186/s13059-022-02648-4.
# Define file paths for tumor and normal data from the data folder
tumor_file <- system.file("extdata",
"removebatch_SKCM_Skin_TCGA_exp_tumor_test.rds",
package = "TransProR")
normal_file <- system.file("extdata",
"removebatch_SKCM_Skin_Normal_TCGA_GTEX_count_test.rds",
package = "TransProR")
output_file <- file.path(tempdir(), "Wilcoxon_rank_sum_testoutRst.rds")
# Run the Wilcoxon rank sum test
outRst <- Wilcoxon_analyze(
tumor_file = tumor_file,
normal_file = normal_file,
output_file = output_file,
logFC_threshold = 2.5,
fdr_threshold = 0.01
)
# View the top 5 rows of the result
head(outRst, 5)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.