View source: R/spectral_clustering.R
SpectralEigens | R Documentation |
Spectral clustering emphasizes nearest neighbours when forming clusters; it avoids some of the issues that arise from clustering around means / medoids.
SpectralEigens(D, nn = 10L, nEig = 2L)
SpectralClustering(D, nn = 10L, nEig = 2L)
D |
Square matrix or |
nn |
Integer specifying number of nearest neighbours to consider |
nEig |
Integer specifying number of eigenvectors to retain. |
SpectralEigens()
returns spectral eigenvalues that can then be
clustered using a method of choice.
Adapted by MRS from script by Nura Kawa
Other tree space functions:
Islands()
,
MSTSegments()
,
MapTrees()
,
MappingQuality()
,
cluster-statistics
,
median.multiPhylo()
library("TreeTools", quietly = TRUE)
trees <- as.phylo(0:18, nTip = 8)
distances <- ClusteringInfoDistance(trees)
eigens <- SpectralEigens(distances)
# Perform clustering:
clusts <- KMeansPP(dist(eigens), k = 3)
plot(eigens, pch = 15, col = clusts$cluster)
plot(cmdscale(distances), pch = 15, col = clusts$cluster)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.