Nothing
#' Eigenvalues for spectral clustering
#'
#' Spectral clustering emphasizes nearest neighbours when forming clusters;
#' it avoids some of the issues that arise from clustering around means /
#' medoids.
#'
#' @param D Square matrix or `dist` object containing Euclidean distances
#' between data points.
#' @param nn Integer specifying number of nearest neighbours to consider
#' @param nEig Integer specifying number of eigenvectors to retain.
#' @author Adapted by MRS from script by [Nura
#' Kawa](https://rpubs.com/nurakawa/spectral-clustering)
#' @return `SpectralEigens()` returns spectral eigenvalues that can then be
#' clustered using a method of choice.
#' @examples
#' library("TreeTools", quietly = TRUE)
#' trees <- as.phylo(0:18, nTip = 8)
#' distances <- ClusteringInfoDistance(trees)
#' eigens <- SpectralEigens(distances)
#' # Perform clustering:
#' clusts <- KMeansPP(dist(eigens), k = 3)
#' plot(eigens, pch = 15, col = clusts$cluster)
#' plot(cmdscale(distances), pch = 15, col = clusts$cluster)
#' @family tree space functions
#' @export
SpectralEigens <- function(D, nn = 10L, nEig = 2L) {
if (nEig < 1) {
stop("nEig must be positive")
}
MutualKnnGraph <- function(D, nn) {
D <- as.matrix(D)
dims <- dim(D)
# intialize the knn matrix
knn_mat <- matrix(FALSE, nrow = dims[[1]], ncol = dims[[2]])
# find the 10 nearest neighbours for each point
for (i in seq_len(nrow(D))) {
neighbor_index <- order(D[i, ])[2:(nn + 1)]
knn_mat[i, ][neighbor_index] <- TRUE
}
# Now we note that i,j are neighbours iff K[i,j] = 1 or K[j, i] = 1
knn_mat <- knn_mat | t(knn_mat) # find mutual knn
# Return:
knn_mat
}
GraphLaplacian <- function(W) {
stopifnot(nrow(W) == ncol(W))
g <- colSums(W) # degrees of vertices
n <- dim(W)[[1]]
D_half <- diag(1 / sqrt(g))
# Return:
diag(n) - D_half %*% W %*% D_half
}
W <- MutualKnnGraph(D, nn) # 1. matrix of similarities
L <- GraphLaplacian(W) # 2. compute graph laplacian
ei <- eigen(L, symmetric = TRUE) # 3. Compute the eigenvectors and values of L
nL <- dim(L)[[1]]
if (nL > nEig) {
# Return the eigenvectors of the n_eig smallest eigenvalues:
ei[["vectors"]][, nL - (0:(nEig - 1))]
} else {
ei[["vectors"]]
}
}
#' @export
#' @rdname SpectralEigens
SpectralClustering <- function(D, nn = 10L, nEig = 2L) {
.Deprecated("SpectralEigens")
SpectralEigens(D, nn, nEig)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.