Nothing
## ===================================================
## Creating a new training sample generated with the introduction
## of Gaussian Noise for classification problems
## Examples:
## library(DMwR)
## data(algae)
## clean.algae <- algae[complete.cases(algae), ]
## C.perc = list(autumn = 2, summer = 1.5, winter = 0.9)
## gn1 <- GaussNoiseClassif(season~., clean.algae)
## gn2 <- GaussNoiseClassif(season~., clean.algae, C.perc)
## P.Branco, May 2015 April 2016
## ---------------------------------------------------
GaussNoiseClassif <- function(form, dat, C.perc = "balance", pert = 0.1,
repl = FALSE)
# Args:
# form a model formula
# dat the original training set (with the unbalanced distribution)
# C.perc named list containing each class percentage of under- or
# over-sampling to apply. The user may provide
# only a subset of the existing classes where sampling is to
# be applied. Alternatively it may be "balance" or "extreme",
# cases where the sampling percentages are automatically estimated.
# pert the level of perturbation to introduce when generating synthetic
# examples. Assuming as center the base example, this parameter
# defines the radius (based on the standard deviation) where the
# new example is generated.
# repl is it allowed to perform sampling with replacement (when
# performing under-sampling)
#
# Returns: a data frame with the new modified data set through the
# Gaussian Noise strategy
{
if (any(is.na(dat))) {
stop("The data set provided contains NA values!")
}
# the column where the target variable is
tgt <- which(names(dat) == as.character(form[[2]]))
names <- sort(unique(dat[, tgt]))
li <- class.freq(dat, tgt)
if (tgt < ncol(dat)) {
orig.order <- colnames(dat)
cols <- 1:ncol(dat)
cols[c(tgt, ncol(dat))] <- cols[c(ncol(dat), tgt)]
dat <- dat[, cols]
}
if (is.list(C.perc)) {
names.und <- names(which(C.perc < 1))
names.ove <- names(which(C.perc > 1))
names.same <- setdiff(names, union(names.und, names.ove))
# include examples from classes unchanged
newdata <- dat[which(dat[, ncol(dat)] %in% names.same), ]
if (length(names.und)) { # perform under-sampling
for (i in 1:length(names.und)) {
Exs <- which(dat[, ncol(dat)] == names.und[i])
sel <- sample(Exs,
as.integer(C.perc[[names.und[i]]] * length(Exs)),
replace=repl)
newdata <- rbind(newdata,dat[sel, ])
}
}
if (length(names.ove)) { # perform over-sampling
for (i in 1:length(names.ove)) {
newExs <- Gn.exsClassif(dat[which(dat[, ncol(dat)] == names.ove[i]), ],
ncol(dat),
C.perc[[names.ove[i]]],
pert)
# add original rare examples and synthetic generated examples
newdata <- rbind(newdata, newExs,
dat[which(dat[, ncol(dat)] == names.ove[i]), ])
}
}
} else {
if (C.perc == "balance") {
li[[3]] <- round(sum(li[[2]]) / length(li[[2]]), 0) - li[[2]]
} else if (C.perc =="extreme") {
med <- sum(li[[2]])/length(li[[2]])
li[[3]] <- round(med^2/li[[2]] * sum(li[[2]])/sum(med^2/li[[2]]), 0) -
li[[2]]
} else {
stop("Please provide a list with classes to under/over-sample or
'balance' or 'extreme'.")
}
und <- which(li[[3]] < 0) # classes to under-sample
ove <- which(li[[3]] > 0) #classes to over-sample
same <- which(li[[3]] == 0) # unchanged classes
# include examples from classes unchanged
newdata <- dat[which(dat[, ncol(dat)] %in% li[[1]][same]), ]
if (length(und)) { #perform under-sampling
for (i in 1:length(und)) {
Exs <- which(dat[, ncol(dat)] == li[[1]][und[i]])
sel <- sample(Exs,
as.integer(li[[2]][und[i]] + li[[3]][und[i]]),
replace = repl)
newdata <- rbind(newdata, dat[sel, ])
}
}
if (length(ove)) { #perform over-sampling
for (i in 1:length(ove)) {
newExs <- Gn.exsClassif(dat[which(dat[, ncol(dat)] == li[[1]][ove[i]]),],
ncol(dat),
li[[3]][ove[i]]/li[[2]][ove[i]] + 1,
pert)
# add original rare examples and synthetic generated examples
newdata <- rbind(newdata, newExs,
dat[which(dat[, ncol(dat)] == li[[1]][ove[i]]), ])
}
}
}
if (tgt < ncol(dat)) {
newdata <- newdata[, cols]
dat <- dat[, cols]
}
newdata
}
# ===================================================
# Obtain a set of synthetic examples generated with Gaussian Noise
# perturbance for a set of rare cases.
#
# P.Branco, May 2015
# ---------------------------------------------------
Gn.exsClassif <- function(dat, tgt, N, pert)
# Args:
# dat are the minority class cases
# tgt the column nr of the target variable
# N is the percentage of over-sampling to carry out;
# pert is the amount of disturbance between 0 and 1 of standard deviation
# Returns:
# The result of the function is a (N-1)*nrow(dat) set of generated
# examples with rare class on the target
{
nC <- dim(dat)[2]
nL <- dim(dat)[1]
nomatr <- c()
T <- matrix(nrow = nL,ncol = nC - 1)
for(col in seq.int(nC - 1))
if (class(dat[, col]) %in% c('factor','character')) {
T[, col] <- as.integer(dat[, col])
nomatr <- c(nomatr, col)
} else {
T[, col] <- dat[, col]
}
numatr <- (1:nC)[-c(nomatr, tgt)]
# number of artificial exs to generate for each rare case
nexs <- as.integer(N - 1)
# the extra examples to generate
extra <- as.integer(nL * (N - 1 - nexs))
id.ex <- sample(1:nL, extra)
newdata <- matrix(nrow = nexs * nL + extra, ncol = nC)
if (nexs) {
for (i in 1:nL) {
for (n in 1:nexs) {
idx <- (i - 1) * nexs + n
for (num in 1:(nC - 1)) {
newdata[idx, num] <- T[i, num] + rnorm(1, 0, sd(T[, num]) * pert)
if (num %in% nomatr) {
probs <- c()
for (u in 1:length(unique(T[, num]))) {
probs <- c(probs, length(which(T[, num] == unique(T[, num])[u])))
}
newdata[idx, num] <- sample(unique(T[, num]), 1, prob = probs)
}
}
}
}
}
if (extra) {
count <- 1
for (i in id.ex) {
for (num in 1:(nC-1)) {
newdata[nexs * nL + count, num] <- T[i, num] +
rnorm(1, 0, sd(T[, num]) * pert)
if (num %in% nomatr) {
probs <- c()
for (u in 1:length(unique(T[, num]))) {
probs <- c(probs,length(which(T[, num] == unique(T[, num])[u])))
}
newdata[nexs * nL + count, num] <- sample(unique(T[, num]),
1, prob = probs)
}
}
count <- count + 1
}
}
newCases <- data.frame(newdata)
for (a in nomatr){
newCases[, a] <- factor(newCases[, a],
levels = 1:nlevels(dat[, a]),
labels = levels(dat[, a]))
}
newCases[, tgt] <- factor(rep(dat[1, tgt], nrow(newCases)),
levels = levels(dat[, tgt]))
colnames(newCases) <- colnames(dat)
newCases
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.