Nothing
SH.IDX = function (x, kmax, kmin = 2, method = "kmeans", nstart = 100)
{
if (missing(x))
stop("Missing input argument. A numeric data frame or matrix is required")
if (missing(kmax))
stop("Missing input argument. A maximum number of clusters is required")
if (!is.numeric(kmax))
stop("Argument 'kmax' must be numeric")
if (kmax > nrow(x))
stop("The maximum number of clusters for consideration should be less than or equal to the number of data points in dataset.")
if (!is.numeric(kmin))
stop("Argument 'kmin' must be numeric")
if (kmin <= 1)
warning("The minimum number of clusters for consideration should be more than 1",
immediate. = TRUE)
if (!any(method == c("kmeans", "hclust_complete", "hclust_average",
"hclust_single")))
stop("Argument 'method' should be one of 'kmeans', 'hclust_complete', 'hclust_average', 'hclust_single'")
if (method == "kmeans") {
if (!is.numeric(nstart))
stop("Argument 'nstart' must be numeric")
}
if (startsWith(method, "hclust_")) {
H.model = hclust(dist(x), method = sub("hclust_", "",
method))
}
sc = vector()
n = nrow(x)
for (k in kmin:kmax) {
if (method == "kmeans") {
K.model = kmeans(x, k, nstart = nstart)
cluss = K.model$cluster
}
else if (startsWith(method, "hclust_")) {
cluss = cutree(H.model, k)
}
if (!all(seq(k) %in% unique(cluss)))
warning("Some clusters are empty.")
size = table(cluss)
sss = 1:n
s=1
for (i in 1:k) {
mm = as.matrix(dist(x[cluss == i,]))
ll = as.numeric(size[i])
if (ll > 1){
for (u in 1:ll){
b = Inf
a = mean(mm[u,-u])
for (ii in setdiff(1:k,i)){
b = min(b,mean(as.matrix(dist(rbind(x[cluss == i,][u,], x[cluss == ii,])))[1,-1]))
}
sss[s] = (b-a)/max(a,b)
s= s+1
}
}else{
sss[s] = 0
s=s+1
}
}
sc[k - kmin + 1] = mean(sss)
}
SH.data = data.frame(cbind(k = kmin:kmax, SH = sc))
return(SH.data)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.