Nothing
## ----setup0, include = FALSE--------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----echo = FALSE, warning=FALSE----------------------------------------------
text_tbl <- data.frame(
FM = c("VAR", "fevd", "irf", "predict", "summary", "arch.test_sh", "normality.test_sh", "serial.test_sh", "stability_sh"),
CL = c("varshrinkest, varest", "varfevd", "varshirf, varirf", "varprd", "varshsum, varsum", "varcheck", "varcheck", "varcheck", "varstabil"),
MC = c("coef, fevd, fitted, irf, logLik, Phi, plot, predict, print, Psi, resid, summary", "plot, print", "plot, print", "plot, print", "print", "plot, print", "plot, print", "plot, print", "plot, print"),
FC = c("Acoef_sh, arch.test_sh, Bcoef_sh, BQ_sh, causality_sh, normality.test_sh, restrict_sh, roots_sh, serial.test_sh, stability_sh", " ", " ", "fanchart", " ", " ", " ", " ", " ")
)
colnames(text_tbl) <- c("Function or method", "Class", "Methods for class", "Functions for class")
kableExtra::column_spec(
knitr::kable(text_tbl,
caption = "Table 1. Structure of the package VARshrink."),
1:4, width = "7em", border_left = FALSE, border_right = FALSE)
## ----setup, include = FALSE---------------------------------------------------
library(VARshrink)
## ----results = "hide", message=FALSE------------------------------------------
set.seed(1000)
myCoef <- list(A = list(matrix(c(0.5, 0, 0, 0.5), 2, 2)), c = c(0.2, 0.7))
myModel <- list(Coef = myCoef, Sigma = diag(0.1^2, 2), dof = Inf)
Y <- simVARmodel(numT = 100, model = myModel, burnin = 10)
resu_estim <- list()
## ----modeldemo, include = FALSE-----------------------------------------------
load("table2_modeldemo.RData")
## -----------------------------------------------------------------------------
resu_estim$`Ridge regression`
## -----------------------------------------------------------------------------
summary(resu_estim$`Ridge regression`)
## -----------------------------------------------------------------------------
resu_estim$`Nonparametric shrinkage`
## -----------------------------------------------------------------------------
summary(resu_estim$`Nonparametric shrinkage`)
## -----------------------------------------------------------------------------
resu_estim$`Full Bayes (fixed dof)`
## -----------------------------------------------------------------------------
summary(resu_estim$`Full Bayes (fixed dof)`)
## -----------------------------------------------------------------------------
resu_estim$`Full Bayes (estim dof)`
## -----------------------------------------------------------------------------
resu_estim$`Semi Bayes (fixed dof)`
summary(resu_estim$`Semi Bayes (fixed dof)`)
## -----------------------------------------------------------------------------
resu_estim$`Semi Bayes (estim dof)`
## -----------------------------------------------------------------------------
resu_estim$`K-fold CV (fixed dof)`
## ----eval = FALSE-------------------------------------------------------------
# resu_estim$`K-fold CV (estim dof)` <-
# VARshrink(Y, p = 1, type = "const", method = "kcv", dof = NULL,
# lambda = NULL, lambda_var = NULL, prior_type = "NCJ",
# num_folds = 5, m0 = ncol(Y))
## -----------------------------------------------------------------------------
resu_sse <- data.frame(SSE = sapply(resu_estim,
function(x) calcSSE_Acoef(Acoef_sh(x), myCoef$A)))
## ----echo = FALSE-------------------------------------------------------------
knitr::kable(round(resu_sse, 3),
caption = "Table 2. Sum of squared errors of VAR coefficients estimated by the shrinkage methods.")
## ----diffCanada, out.width='70%', fig.cap = "Figure 1. The benchmark data set obtained by differencing the Canada data."----
data(Canada, package = "vars")
Y = diff(Canada)
plot(Y, cex.lab = 1.3)
## ----eval = FALSE-------------------------------------------------------------
# set.seed(1000)
# resu_model <- array(NA, dim = c(5, 2, 3),
# dimnames = list(c("Ridge regression", "Nonparametric shrinkage",
# "Full Bayes", "Semi Bayes", "K-fold CV"),
# c("AIC", "BIC"), c("p=1", "p=2", "p=3")))
# for (p in 1:3) {
# EstimRidge <- VARshrink(Y, p = p, type = "const", method = "ridge")
# resu_model["Ridge regression", , p] <- c(AIC(EstimRidge), BIC(EstimRidge))
#
# EstimNS <- VARshrink(Y, p = p, type = "none", method = "ns")
# resu_model["Nonparametric shrinkage", , p] <-
# c(AIC(EstimNS), BIC(EstimNS))
#
# EstimFB <- VARshrink(Y, p = p, type = "const", method = "fbayes", dof = NULL)
# resu_model["Full Bayes", , p] <- c(AIC(EstimFB), BIC(EstimFB))
#
# EstimSB <- VARshrink(Y, p = p, type = "const", method = "sbayes",
# dof = NULL, prior_type = "NCJ")
# resu_model["Semi Bayes", , p] <- c(AIC(EstimSB), BIC(EstimSB))
#
# EstimKCV <- VARshrink(Y, p = p, type = "const", method = "kcv",
# dof = NULL, prior_type = "NCJ")
# resu_model["K-fold CV", , p] <- c(AIC(EstimKCV), BIC(EstimKCV))
# }
## ----include = FALSE----------------------------------------------------------
load("table3_modelcomp.RData")
## ----modelcomp, echo = FALSE--------------------------------------------------
knitr::kable(round(resu_model, 1),
caption = "Table 3. Information criteria (AIC, BIC) for model comparison.")
## ----pred, fig.cap="Figure 2. A 10-step ahead Forecasting of time series by the VAR model estimated by the nonparametric shrinkage method. The differenced Canada data were modeled by a VAR(2) model selected at the minimum BIC."----
plot(predict(VARshrink(Y, p = 2, type = "none", method = "ns")), names = "U")
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.