R/computePosterior.R

Defines functions Ajf A1f A0f computePosterior.familyPrior_laplace computePosterior.familyPrior computePosterior

Documented in computePosterior computePosterior.familyPrior computePosterior.familyPrior_laplace

#' Internal function: Compute posterior mean and variance of normal location problem
#'
#' Computes the posterior mean and variance of the normal location problem with
#' fixed variance to 1, i.e. \eqn{x | \gamma \sim N(\gamma, 1)}.
#' The priors for \eqn{\gamma} are either \code{\link[WALS]{weibull}},
#' \code{\link[WALS]{subbotin}} or \code{\link[WALS]{laplace}}. Their properties
#' are briefly discussed in \insertCite{magnus2016wals;textual}{WALS}.
#' Default method of computePosterior uses numerical integration. This is used
#' for the \code{\link[WALS]{weibull}} and \code{\link[WALS]{subbotin}} priors.
#' For the \code{\link[WALS]{laplace}} prior closed form expressions exist for the integrals.
#' In the original MATLAB code, the Gauss-Kronrod quadrature was used for
#' numerical integration. Here we use the default \code{\link[stats]{integrate}} which
#' combines Gauss-Kronrod with Wynn's Epsilon algorithm for extrapolation.
#'
#' @param object Object of class \code{"\link[WALS]{familyPrior}"}, e.g. from
#' \code{\link[WALS]{weibull}}, should contain all necessary parameters needed
#' for the posterior.
#' @param x vector. Observed values, i.e. in WALS these are the regression
#' coefficients of the transformed regressor Z2 standardized by the standard
#' deviation: \eqn{\gamma_{2u} / s}.
#' @param ... Further arguments passed to methods.
#'
#'
#' @details
#' See section "Numerical integration in Bayesian estimation step"
#' in the appendix of \insertCite{huynhwals;textual}{WALS} for details.
#'
#' @references
#' \insertAllCited{}
#'
#' @references Original MATLAB code on Jan Magnus' website.
#' \url{https://www.janmagnus.nl/items/WALS.pdf}
#'
computePosterior <- function(object, ...) UseMethod("computePosterior", object)

#' @rdname computePosterior
computePosterior.familyPrior <- function(object, x, ...) {
  # Use numerical integration for Weibull and Subbotin priors.

  # preallocate
  postMean <- rep(NA, length(x))
  postVariance <- rep(NA, length(x))

  # Numerical integration and posterior mean and var. computations
  for (i in seq_along(x)) {
    A0 <- integrate(A0f, lower = 0, upper = Inf, x = x[i],
                    priorDensity = object$density)
    if (A0$message != "OK") warning(paste0("Warning in integrate A0f: ", A0$message))

    A1 <- integrate(A1f, lower = 0, upper = Inf, x = x[i],
                    priorDensity = object$density)
    if (A1$message != "OK") warning(paste0("Warning in integrate A1f: ", A1$message))

    A2 <- integrate(Ajf, lower = 0, upper = Inf, x = x[i],
                    priorDensity = object$density, j = 2.0)
    if (A2$message != "OK") warning(paste0("Warning in integrate A2f: ", A2$message))

    postMean[i] <- x[i] - A1$value/A0$value
    postVariance[i] <- A2$value/A0$value - (A1$value/A0$value)^2.0
  }

  return(list(postMean = postMean, postVariance = postVariance))
}

#' Compute posterior moments for Laplace prior
#'
#' @details
#' \code{computePosterior.familyPrior_laplace()} is the specialized method for the
#' S3 class \code{"\link[WALS]{familyPrior_laplace}"} and computes the posterior
#' first and second moments of the normal location problem with a Laplace prior
#' using the analytical formula (without numerical integration).
#' For more details, see \insertCite{deluca2020laplace;textual}{WALS} and the
#' original code of Magnus and De Luca.
#'
#' @rdname computePosterior
computePosterior.familyPrior_laplace <- function(object, x, ...) {
  signx <- sign(x)
  absx <- abs(x)

  g0 <- pnorm(-absx - object$b)
  g1 <- pnorm(absx - object$b)
  g2 <- dnorm(absx - object$b)
  # psi0 <- g0 / g1
  psi1 <- g2 / g1
  # psi2 <- exp(2.0 * object$b * absx) * psi0
  psi2 <- exp(2.0 * object$b * absx + log(g0) - log(g1))
  hratio <- (1.0 - psi2) / (1.0 + psi2)

  postMean <- signx * (absx - object$b * hratio)
  postVariance <- (1.0 + (object$b^2.0) * (1.0 - (hratio^2.0))
                   - object$b * (1.0 + hratio) * psi1)

  return(list(postMean = postMean, postVariance = postVariance))
}


# helper functions for computePosterior, e.g. integrands for A0, A1 and A2

# Integrand of A0, eq.25 in Magnus and De Luca (2016, pp. 134), WALS survey
A0f <- function(gam, x, priorDensity) {
  (dnorm(x - gam) + dnorm(x + gam)) * priorDensity(gam)
}

# Integrand of A1
A1f <- function(gam, x, priorDensity) {
  ( (x - gam)*dnorm(x - gam) + (x + gam)*dnorm(x + gam) ) * priorDensity(gam)
}


# Integrand of Aj with general power j
Ajf <- function(gam, x, priorDensity, j) {
  ( ((x - gam)^j)*dnorm(x - gam) + ((x + gam)^j)*dnorm(x + gam) ) * priorDensity(gam)
}

Try the WALS package in your browser

Any scripts or data that you put into this service are public.

WALS documentation built on June 22, 2024, 9:42 a.m.