Nothing
test_that("walsGLM estimation converges", {
data("HMDA", package = "AER")
HMDA <- na.omit(HMDA)
fitBinomial <- walsGLM(deny ~ pirat + hirat + lvrat + chist + mhist + phist |
selfemp + afam, family = binomialWALS(), data = HMDA,
prior = weibull(), iterate = TRUE)
expect_true(fitBinomial$converged)
data("NMES1988", package = "AER")
NMES1988 <- na.omit(NMES1988)
fitPoisson <- walsGLM(emergency ~ health + chronic + age + gender |
I((age^2)/10) + married + region, family = poissonWALS(),
data = NMES1988, prior = laplace(), iterate = TRUE)
expect_true(fitPoisson$converged)
})
test_that("walsGLM limiting nIt works and returns finite coefficients", {
data("HMDA", package = "AER")
HMDA <- na.omit(HMDA)
# maximum value of L2 norm of coefficients
# For HMDA dataset and given regressors, it should not exceed this value!
limit <- 10
fitBinomial <- walsGLM(deny ~ pirat + hirat + lvrat + chist + mhist + phist |
selfemp + afam, family = binomialWALS(), data = HMDA,
prior = weibull(), iterate = TRUE)
expect_true(fitBinomial$converged)
coefs <- coef(fitBinomial)
coefsNorm <- norm(coefs, type = "2")
# expect that L2 norm of coefficients is smaller than limit and finite
expect_true(is.finite(coefsNorm))
expect_true(coefsNorm < limit)
})
test_that("Different class methods of walsGLM yield same results", {
data("HMDA", package = "AER")
HMDA <- na.omit(HMDA)
fitFormula <- walsGLM(deny ~ pirat + hirat + lvrat + chist + mhist + phist |
selfemp + afam, data = HMDA, family = binomialWALS(),
prior = weibull(), keepX = TRUE, keepY = TRUE)
fitMatrix <- walsGLM(fitFormula$x$focus, fitFormula$x$aux, fitFormula$y,
family = binomialWALS(), prior = weibull())
fitDefault <- walsGLM.default(fitFormula$x$focus, fitFormula$x$aux, fitFormula$y,
family = binomialWALS(), prior = weibull())
# expect no error in familyWALS extraction.
expect_error(familyWALS(fitFormula), regexp = NA)
expect_identical(coef(fitFormula), coef(fitMatrix), coef(fitDefault))
expect_identical(vcov(fitFormula), vcov(fitMatrix), vcov(fitDefault))
})
test_that("Different methods for walsGLM yield same results", {
## Check if estimated regression coefficients from different methods
## yield same results.
tol <- 1e-06 # relative tolerance for deviations
data("HMDA", package = "AER")
HMDA <- na.omit(HMDA)
fWals <- deny ~ pirat + hirat + lvrat + chist + mhist + phist | selfemp + afam
# Turn off iteration in all models as iterating WALS algo will magnify
# small numerical differences between the methods.
glmWALSsvd <- walsGLM(deny ~ pirat + hirat + lvrat + chist + mhist + phist |
selfemp + afam, family = binomialWALS(), data = HMDA,
prior = weibull(), iterate = TRUE, method = "svd")
glmWALSoriginal <- walsGLM(deny ~ pirat + hirat + lvrat + chist + mhist + phist |
selfemp + afam, family = binomialWALS(), data = HMDA,
prior = weibull(), iterate = TRUE, method = "original")
expect_equal(coef(glmWALSsvd), coef(glmWALSoriginal), tolerance = tol)
})
test_that("residuals.walsGLM return correct values", {
tol <- 1e-6 # relative tolerance for deviations
data("NMES1988", package = "AER")
NMES1988 <- na.omit(NMES1988)
fitPoisson <- walsGLM(emergency ~ health + chronic + age + gender |
I((age^2)/10) + married + region, family = poissonWALS(),
data = NMES1988, prior = laplace(), iterate = TRUE,
verbose = TRUE)
y <- NMES1988$emergency
mu <- predict(fitPoisson, newdata = NMES1988)
pearson <- (y - mu) / sqrt(mu)
devres <- mu # for y = 0
devres[y > 0] <- (y * (log(y) - log(mu)) - (y - mu))[y > 0]
devres <- 2 * devres
devres <- sqrt(devres)
devres <- ifelse(y - mu > 0, devres, -devres)
resids <- y - mu
expect_equal(pearson, residuals(fitPoisson, type = "pearson"), tolerance = tol)
expect_equal(devres, residuals(fitPoisson, type = "deviance"), tolerance = tol)
expect_equal(resids, residuals(fitPoisson, type = "response"), tolerance = tol)
})
test_that("Predictions use correct link values", {
data("HMDA", package = "AER")
HMDA <- na.omit(HMDA)
fitFormula <- walsGLM(deny ~ pirat + hirat + lvrat + chist + mhist + phist |
selfemp + afam, data = HMDA, family = binomialWALS(),
prior = weibull(), keepX = TRUE, keepY = TRUE)
linkFormula <- as.vector(model.matrix(fitFormula, "focus") %*% coef(fitFormula, "focus")
+ model.matrix(fitFormula, "aux") %*% coef(fitFormula, "aux"))
fitMatrix <- walsGLM(fitFormula$x$focus, fitFormula$x$aux, fitFormula$y,
family = binomialWALS(), prior = weibull())
linkMatrix <- as.vector(fitFormula$x$focus %*% coef(fitMatrix, "focus")
+ fitFormula$x$aux %*% coef(fitMatrix, "aux"))
expect_identical(linkFormula, as.vector(predict(fitFormula, newdata = HMDA,
type = "link")))
expect_identical(linkMatrix, as.vector(predict(fitMatrix, newX1 = fitFormula$x$focus,
newX2 = fitFormula$x$aux, type = "link")))
})
test_that("logLik.walsGLM returns correct value", {
tol <- 1e-6
data("HMDA", package = "AER")
HMDA <- na.omit(HMDA)
fitFormula <- walsGLM(deny ~ pirat + hirat + lvrat + chist + mhist + phist |
selfemp + afam, data = HMDA, family = binomialWALS(),
prior = weibull(), keepX = TRUE, keepY = TRUE)
X <- cbind(model.matrix(fitFormula, "focus"), model.matrix(fitFormula, "aux"))
mu <- plogis(X %*% coef(fitFormula))
ll <- sum(dbinom(fitFormula$y, size = 1, prob = mu, log = TRUE))
expect_equal(logLik(fitFormula), ll, tolerance = tol)
})
test_that("Probability predictions work as intended", {
data("NMES1988", package = "AER")
NMES1988 <- na.omit(NMES1988)
fitPoisson <- walsGLM(emergency ~ health + chronic + age + gender |
I((age^2)/10) + married + region, family = poissonWALS(),
data = NMES1988, prior = laplace())
# expect no error in probability prediction.
expect_error(predict(fitPoisson, newdata = NMES1988, type = "prob"),
regexp = NA)
data("HMDA", package = "AER")
HMDA <- na.omit(HMDA)
fitBinomial <- walsGLM(deny ~ pirat + hirat + lvrat + chist + mhist + phist |
selfemp + afam, data = HMDA, family = binomialWALS(),
prior = subbotin())
# expect error in probability prediction
expect_error(predict(fitBinomial, newdata = HMDA, type = "prob"),
regexp = "Probability predictions of counts not supported for")
})
test_that("One-part formula uses all variables as auxiliary regressors", {
## Check if y ~ x1 + x2 is the same as y ~ 1 | x1 + x2
tol <- 1e-08 # relative tolerance for deviations
data("HMDA", package = "AER")
HMDA <- na.omit(HMDA)
fOne <- deny ~ pirat + hirat + lvrat + chist + mhist + phist + selfemp
fTwo <- deny ~ 1 | pirat + hirat + lvrat + chist + mhist + phist + selfemp
glmOne <- walsGLM(fOne, family = binomialWALS(), data = HMDA,
prior = laplace(), method = "svd")
glmTwo <- walsGLM(fTwo, family = binomialWALS(), data = HMDA,
prior = laplace(), method = "svd")
expect_equal(coef(glmOne), coef(glmTwo), tolerance = tol)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.