Nothing
#' @title Conduct the continuous wavelet transform on a time series/signal
#'
#' @description
#' Compute the continuous wavelet transform (CWT) using a Morlet wavelet
#'
#' @param data Input data, should be a matrix or data frame in which
#' the first column is depth or time and the second column is proxy record.
#' @param dj Spacing between successive scales. The CWT analyses analyses the signal using successive periods
#' which increase by the power of 2 (e.g.2^0=1,2^1=2,2^2=4,2^3=8,2^4=16). To have more resolution
#' in-between these steps the dj parameter exists, the dj parameter specifies how many extra steps/spacing in-between
#' the power of 2 scaled CWT is added. The amount of steps is 1/x with a higher x indicating a smaller spacing.
#' Increasing the increases the computational time of the CWT \code{Default=1/200}.
#' @param lowerPeriod Lowest period to be analyzed \code{Default=2}.
#' The CWT analyses the signal starting from the lowerPeriod to the upperPeriod so the proper selection these
#' parameters allows to analyze the signal for a specific range of cycles.
#' scaling is done using power 2 so for the best plotting results select a value to the power or 2.
#' @param upperPeriod Upper period to be analyzed \code{Default=1024}.
#' The CWT analyses the signal starting from the lowerPeriod to the upperPeriod so the proper selection these
#' parameters allows to analyze the signal for a specific range of cycles.
#' scaling is done using power 2 so for the best plotting results select a value to the power or 2.
#' @param verbose Print text \code{Default=FALSE}.
#' @param omega_nr Number of cycles contained within the Morlet wavelet
#'
#' @return
#' The output is a list (wavelet object) which contain 18 objects which are the result of the continuous wavelet transform (CWT).
#'Object 1: Wave - Wave values of the wavelet
#'Object 2: Phase - Phase of the wavelet
#'Object 3: Ampl - Amplitude values of the wavelet
#'Object 4: Power - Power values of the wavelet
#'Object 5: dt - Step size
#'Object 6: dj - Scale size
#'Object 7: Power.avg - Average power values
#'Object 8: Period - Period values
#'Object 9: Scale - Scale value
#'Object 10: coi.1 - Cone of influence values 1
#'Object 11: coi.2 - Cone of influence values 2
#'Object 12: nc - Number of columns
#'Object 13: nr - Number of rows
#'Object 14: axis.1 - axis values 1
#'Object 15: axis.2 - axis values 2
#'Object 16: omega_nr - Number of cycles in the wavelet
#'Object 17: x - x values of the data set
#'Object 18: y - y values of the data set
#'
#' @author
#' Code based on on the \link[WaveletComp]{analyze.wavelet} function of the 'WaveletComp' R package
#' and \link[biwavelet]{wt} function of the 'biwavelet' R package which are based on the
#' wavelet MATLAB code written by Christopher Torrence and Gibert P. Compo.
#'
#' @references
#'Angi Roesch and Harald Schmidbauer (2018). WaveletComp: Computational
#'Wavelet Analysis. R package version 1.1.
#'\url{https://CRAN.R-project.org/package=WaveletComp}
#'
#'Gouhier TC, Grinsted A, Simko V (2021). R package biwavelet: Conduct Univariate and Bivariate Wavelet Analyses. (Version 0.20.21),
#'\url{https://github.com/tgouhier/biwavelet}
#'
#'Torrence, C., and G. P. Compo. 1998. A Practical Guide to Wavelet Analysis.
#'Bulletin of the American Meteorological Society 79:61-78.
#'\url{https://paos.colorado.edu/research/wavelets/bams_79_01_0061.pdf}
#'
#'Morlet, Jean, Georges Arens, Eliane Fourgeau, and Dominique Glard.
#'"Wave propagation and sampling theory—Part I: Complex signal and scattering in multilayered media.
#'" Geophysics 47, no. 2 (1982): 203-221.
#' \url{https://pubs.geoscienceworld.org/geophysics/article/47/2/203/68601/Wave-propagation-and-sampling-theory-Part-I}
#'
#'J. Morlet, G. Arens, E. Fourgeau, D. Giard;
#' Wave propagation and sampling theory; Part II, Sampling theory and complex waves.
#' Geophysics 1982 47 (2): 222–236. \url{https://pubs.geoscienceworld.org/geophysics/article/47/2/222/68604/Wave-propagation-and-sampling-theory-Part-II}
#'
#' @examples
#' \donttest{
#'#Example 1. Using the Total Solar Irradiance data set of Steinhilver et al., (2012)
#'TSI_wt <-
#' analyze_wavelet(
#' data = TSI,
#' dj = 1/200,
#' lowerPeriod = 16,
#' upperPeriod = 8192,
#' verbose = FALSE,
#' omega_nr = 6
#' )
#'
#'
#'#Example 2. Using the magnetic susceptibility data set of Pas et al., (2018)
#'mag_wt <-
#'analyze_wavelet(
#'data = mag,
#'dj = 1/100,
#'lowerPeriod = 0.1,
#'upperPeriod = 254,
#'verbose = FALSE,
#'omega_nr = 10
#')
#'
#'#Example 3. Using the greyscale data set of Zeeden et al., (2013)
#'grey_wt <-
#' analyze_wavelet(
#' data = grey,
#' dj = 1/200,
#' lowerPeriod = 0.02,
#' upperPeriod = 256,
#' verbose = FALSE,
#' omega_nr = 8
#' )
#'
#'}
#' @export
#' @importFrom stats sd
#' @importFrom stats median
#' @importFrom stats fft
#' @importFrom WaveletComp analyze.wavelet
#' @importFrom biwavelet wt
analyze_wavelet <-
function(data = NULL,
dj = 1 / 20,
lowerPeriod = 2,
upperPeriod = 1024,
verbose = FALSE,
omega_nr = 6) {
dat <- as.matrix(data)
dat <- na.omit(dat)
dat <- dat[order(dat[, 1], na.last = NA, decreasing = F),]
npts <- length(dat[, 1])
start <- dat[1, 1]
end <- dat[length(dat[, 1]), 1]
x1 <- dat[1:(npts - 1), 1]
x2 <- dat[2:(npts), 1]
dx = x2 - x1
dt = median(dx)
xout <- seq(start, end, by = dt)
npts <- length(xout)
interp <- approx(dat[, 1], dat[, 2], xout, method = "linear",
n = npts)
dat <- as.data.frame(interp)
if (verbose == TRUE) {
cat("dataset interpolated to: ", round(dt, 10))
}
x_axis <- dat[, 1]
x <- dat[, 2]
# Original length and length of zero padding:
series.length = length(x)
pot2 = trunc(log2(series.length) + 0.5)
pad.length = 2 ^ (pot2 + 1) - series.length
# Define central angular frequency omega0 and fourier factor:
omega0 = omega_nr
# fourier.factor = (4*pi)/(omega0 + sqrt(2+omega0^2))
fourier.factor = (2 * pi) / omega0
# Compute scales and periods:
min.scale = lowerPeriod / fourier.factor # Convert lowerPeriod to minimum scale
max.scale = upperPeriod / fourier.factor # Convert upperPeriod to maximum scale
J = as.integer(log2(max.scale / min.scale) / dj) # Index of maximum scale -1
scales = min.scale * 2 ^ ((0:J) * dj) # sequence of scales
scales.length = length(scales) # J + 1
periods = fourier.factor * scales # sequence of periods
# Computation of the angular frequencies
N = series.length + pad.length
omega.k = 1:floor(N / 2)
omega.k = omega.k * (2 * pi) / (N * dt) # k <= N/2
omega.k = c(0, omega.k, -omega.k[floor((N - 1) / 2):1])
###############################################################################
## Define the Morlet wavelet transform function
###############################################################################
x_standard = (x - mean(x)) / sd(x)
xpad = c(x_standard, rep(0, pad.length))
# Compute Fast Fourier Transform of xpad
fft.xpad = fft(xpad)
# Compute wavelet transform of x
# Prepare a complex matrix which accomodates the wavelet transform
wave = matrix(0, nrow = scales.length, ncol = N)
wave = wave + 1i * wave
# Computation for each scale...
# ... simultaneously for all time instances
for (ind.scale in (1:scales.length)) {
my.scale = scales[ind.scale]
norm.factor = pi ^ (1 / 4) * sqrt(2 * my.scale / dt)
expnt = -((my.scale * omega.k - omega0) ^ 2 / 2) * (omega.k > 0)
daughter = norm.factor * exp(expnt)
daughter = daughter * (omega.k > 0)
wave[ind.scale,] = fft(fft.xpad * daughter, inverse = TRUE) / N
}
# Cut out the wavelet transform
Wave = wave[, 1:series.length]
# Compute wavelet power
Power = Mod(Wave) ^ 2 / matrix(rep(scales, series.length), nrow = scales.length)
# Phase
Phase = Arg(Wave)
# Amplitude
Ampl = Mod(Wave) / matrix(rep(sqrt(scales), series.length), nrow =
scales.length)
Power.avg = rowMeans(as.matrix(Power))
axis.1 = x_axis
axis.2 = log2(periods)
fourier.factor = (2 * pi) / omega0
coi = fourier.factor * sqrt(2) * dt * c(1E-5, 1:((series.length + 1) /
2 - 1), rev((1:(
series.length / 2 - 1
))), 1E-5)
coi.x = c(axis.1[c(1, 1)] - dt * 0.5, axis.1, axis.1[c(series.length, series.length)] + dt *
0.5)
logyint = axis.2[2] - axis.2[1]
yl = c(log2(periods[scales.length]) + 0.5 * logyint, log2(periods[1]) - 0.5 *
logyint)
yr = rev(yl)
coi.y = c(yl, log2(coi), yr)
x <- dat[, 1]
y <- dat[, 2]
output <-
list(
Wave = Wave,
Phase = Phase,
Ampl = Ampl,
Power = Power,
dt = dt,
dj = dj,
Power.avg = Power.avg,
Period = periods,
Scale = scales,
coi.1 = coi.x,
coi.2 = coi.y,
nc = series.length,
nr = scales.length,
axis.1 = axis.1,
axis.2 = axis.2,
omega_nr = omega_nr,
x = x,
y = y
)
class(output) = "analyze.wavelet"
return(invisible(output))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.