Nothing
#' Comprehensive R function for the enrichment analysis
#'
#' Main function for enrichment analysis
#'
#' WebGestaltR function can perform three enrichment analyses:
#' ORA (Over-Representation Analysis) and GSEA (Gene Set Enrichment Analysis).and
#' NTA (Network Topology Analysis). Based on the user-uploaded gene list or gene list
#' with scores, WebGestaltR function will first map the gene list to the entrez gene
#' ids and then summarize the gene list based on the GO (Gene Ontology) Slim. After
#' performing the enrichment analysis, WebGestaltR function also returns a user-friendly
#' HTML report containing GO Slim summary and the enrichment analysis result. If functional
#' categories have DAG (directed acyclic graph) structure or genes in the functional
#' categories have network structure, those relationship can also be visualized in the
#' report.
#'
#' @param enrichMethod Enrichment methods: \code{ORA}, \code{GSEA} or \code{NTA}.
#' @param organism Currently, WebGestaltR supports 12 organisms. Users can use the function
#' \code{listOrganism} to check available organisms. Users can also input \code{others} to
#' perform the enrichment analysis for other organisms not supported by WebGestaltR. For
#' other organisms, users need to provide the functional categories, interesting list and
#' reference list (for ORA method). Because WebGestaltR does not perform the ID mapping for
#' the other organisms, the above data should have the same ID type.
#' @param enrichDatabase The functional categories for the enrichment analysis. Users can use
#' the function \code{listGeneSet} to check the available functional databases for the
#' selected organism. Multiple databases in a vector are supported for ORA and GSEA.
#' @param enrichDatabaseFile Users can provide one or more GMT files as the functional
#' category for enrichment analysis. The extension of the file should be \code{gmt} and the
#' first column of the file is the category ID, the second one is the external link for the
#' category. Genes annotated to the category are from the third column. All columns are
#' separated by tabs. The GMT files will be combined with \code{enrichDatabase}.
#' @param enrichDatabaseType The ID type of the genes in the \code{enrichDatabaseFile}.
#' If users set \code{organism} as \code{others}, users do not need to set this ID type because
#' WebGestaltR will not perform ID mapping for other organisms. The supported ID types of
#' WebGestaltR for the selected organism can be found by the function \code{listIdType}.
#' @param enrichDatabaseDescriptionFile Users can also provide description files for the custom
#' \code{enrichDatabaseFile}. The extension of the description file should be \code{des}. The
#' description file contains two columns: the first column is the category ID that should be
#' exactly the same as the category ID in the custom \code{enrichDatabaseFile} and the second
#' column is the description of the category. All columns are separated by tabs.
#' @param interestGeneFile If \code{enrichMethod} is \code{ORA} or \code{NTA}, the extension of
#' the \code{interestGeneFile} should be \code{txt} and the file can only contain one column:
#' the interesting gene list. If \code{enrichMethod} is \code{GSEA}, the extension of the
#' \code{interestGeneFile} should be \code{rnk} and the file should contain two columns
#' separated by tab: the gene list and the corresponding scores.
#' @param interestGene Users can also use an R object as the input. If \code{enrichMethod} is
#' \code{ORA} or \code{NTA}, \code{interestGene} should be an R \code{vector} object
#' containing the interesting gene list. If \code{enrichMethod} is \code{GSEA},
#' \code{interestGene} should be an R \code{data.frame} object containing two columns: the
#' gene list and the corresponding scores.
#' @param interestGeneType The ID type of the interesting gene list. The supported ID types of
#' WebGestaltR for the selected organism can be found by the function \code{listIdType}. If
#' the \code{organism} is \code{others}, users do not need to set this parameter.
#' @param collapseMethod The method to collapse duplicate IDs with scores. \code{mean},
#' \code{median}, \code{min} and \code{max} represent the mean, median, minimum and maximum
#' of scores for the duplicate IDs.
#' @param referenceGeneFile For the ORA method, the users need to upload the reference gene
#' list. The extension of the \code{referenceGeneFile} should be \code{txt} and the file can
#' only contain one column: the reference gene list.
#' @param referenceGene For the ORA method, users can also use an R object as the reference
#' gene list. \code{referenceGene} should be an R \code{vector} object containing the
#' reference gene list.
#' @param referenceGeneType The ID type of the reference gene list. The supported ID types
#' of WebGestaltR for the selected organism can be found by the function \code{listIdType}.
#' If the \code{organism} is \code{others}, users do not need to set this parameter.
#' @param referenceSet Users can directly select the reference set from existing platforms in
#' WebGestaltR and do not need to provide the reference set through \code{referenceGeneFile}.
#' All existing platforms supported in WebGestaltR can be found by the function
#' \code{listReferenceSet}. If \code{referenceGeneFile} and \code{refereneceGene} are
#' \code{NULL}, WebGestaltR will use the \code{referenceSet} as the reference gene set.
#' Otherwise, WebGestaltR will use the user supplied reference set for enrichment analysis.
#' @param minNum WebGestaltR will exclude the categories with the number of annotated genes
#' less than \code{minNum} for enrichment analysis. The default is \code{10}.
#' @param maxNum WebGestaltR will exclude the categories with the number of annotated genes
#' larger than \code{maxNum} for enrichment analysis. The default is \code{500}.
#' @param sigMethod Two methods of significance are available in WebGestaltR: \code{fdr} and
#' \code{top}. \code{fdr} means the enriched categories are identified based on the FDR and
#' \code{top} means all categories are ranked based on FDR and then select top categories
#' as the enriched categories. The default is \code{fdr}.
#' @param fdrMethod For the ORA method, WebGestaltR supports five FDR methods: \code{holm},
#' \code{hochberg}, \code{hommel}, \code{bonferroni}, \code{BH} and \code{BY}. The default
#' is \code{BH}.
#' @param fdrThr The significant threshold for the \code{fdr} method. The default is \code{0.05}.
#' @param topThr The threshold for the \code{top} method. The default is \code{10}.
#' @param reportNum The number of enriched categories visualized in the final report. The default
#' is \code{20}. A larger \code{reportNum} may be slow to render in the report.
#' @param perNum The number of permutations for the GSEA method. The default is \code{1000}.
#' @param gseaP The exponential scaling factor of the phenotype score. The default is \code{1}.
#' When p=0, ES reduces to standard K-S statistics (See original paper for more details).
#' @param isOutput If \code{isOutput} is TRUE, WebGestaltR will create a folder named by
#' the \code{projectName} and save the results in the folder. Otherwise, WebGestaltR will
#' only return an R \code{data.frame} object containing the enrichment results. If
#' hundreds of gene list need to be analyzed simultaneously, it is better to set
#' \code{isOutput} to \code{FALSE}. The default is \code{TRUE}.
#' @param outputDirectory The output directory for the results.
#' @param projectName The name of the project. If \code{projectName} is \code{NULL},
#' WebGestaltR will use time stamp as the project name.
#' @param dagColor If \code{dagColor} is \code{binary}, the significant terms in the DAG
#' structure will be colored by steel blue for ORA method or steel blue (positive related)
#' and dark orange (negative related) for GSEA method. If \code{dagColor} is \code{continous},
#' the significant terms in the DAG structure will be colored by the color gradient based on
#' corresponding FDRs.
#' @param saveRawGseaResult Whether the raw result from GSEA is saved as a RDS file, which can be
#' used for plotting. Defaults to \code{FALSE}. The list includes
#' \describe{
#' \item{Enrichment_Results}{A data frame of GSEA results with statistics}
#' \item{Running_Sums}{A matrix of running sum of scores for each gene set}
#' \item{Items_in_Set}{A list with ranks of genes for each gene set}
#' }
#' @param gseaPlotFormat The graphic format of GSEA enrichment plots. Either \code{svg},
#' \code{png}, or \code{c("png", "svg")} (default).
#' @param setCoverNum The number of expected gene sets after set cover to reduce redundancy.
#' It could get fewer sets if the coverage reaches 100\%. The default is \code{10}.
#' @param networkConstructionMethod Netowrk construction method for NTA. Either
#' \code{Network_Retrieval_Prioritization} or \code{Network_Expansion}. Network Retrieval &
#' Prioritization first uses random walk analysis to calculate random walk probabilities
#' for the input seeds, then identifies the relationships among the seeds in the selected
#' network and returns a retrieval sub-network. The seeds with the top random walk
#' probabilities are highlighted in the sub-network. Network Expansion first uses random
#' walk analysis to rank all genes in the selected network based on their network
#' proximity to the input seeds and then return an expanded sub-network in which nodes
#' are the input seeds and their top ranking neighbors and edges represent their
#' relationships.
#' @param neighborNum The number of neighbors to include in NTA Network Expansion method.
#' @param highlightType The type of nodes to highlight in the NTA Network Expansion method,
#' either \code{Seeds} or \code{Neighbors}.
#' @param highlightSeedNum The number of top input seeds to highlight in NTA Network Retrieval
#' & Prioritizaiton method.
#' @param nThreads The number of cores to use for GSEA and set cover, and in batch function.
#' @param cache A directory to save data cache for reuse. Defaults to \code{NULL} and disabled.
#' @param hostName The server URL for accessing data. Mostly for development purposes.
#' @param ... In batch function, passes parameters to WebGestaltR function.
#' Also handles backward compatibility for some parameters in old versions.
#'
#' @return The WebGestaltR function returns a data frame containing the enrichment analysis
#' result and also outputs an user-friendly HTML report if \code{isOutput} is \code{TRUE}.
#' The columns in the data frame depend on the \code{enrichMethod} and they are the following:
#' \describe{
#' \item{geneSet}{ID of the gene set.}
#' \item{description}{Description of the gene set if available.}
#' \item{link}{Link to the data source.}
#' \item{size}{The number of genes in the set after filtering by \code{minNum} and \code{maxNum}.}
#' \item{overlap}{The number of mapped input genes that are annotated in the gene set.}
#' \item{expect}{Expected number of input genes that are annotated in the gene set.}
#' \item{enrichmentRatio}{Enrichment ratio, overlap / expect.}
#' \item{enrichmentScore}{Enrichment score, the maximum running sum of scores for the ranked list.}
#' \item{normalizedEnrichmentScore}{Normalized enrichment score, normalized against the average
#' enrichment score of all permutations.}
#' \item{leadingEdgeNum}{Number of genes/phosphosites in the leading edge.}
#' \item{pValue}{P-value from hypergeometric test for ORA. For GSEA, please refer to its original
#' publication or online at \url{https://software.broadinstitute.org/gsea/doc/GSEAUserGuideTEXT.htm}.}
#' \item{FDR}{Corrected P-value for mulilple testing with \code{fdrMethod} for ORA.}
#' \item{overlapId}{The gene/phosphosite IDs of \code{overlap} for ORA (entrez gene IDs or
#' phosphosite sequence).}
#' \item{leadingEdgeId}{Genes/phosphosites in the leading edge in entrez gene ID or
#' phosphosite sequence.}
#' \item{userId}{The gene/phosphosite IDs of \code{overlap} for ORA or \code{leadingEdgeId}
#' for GSEA in User input IDs.}
#' \item{plotPath}{Path of the GSEA enrichment plot.}
#' \item{database}{Name of the source database if multiple enrichment databases are given.}
#' \item{goId}{In NTA, like \code{geneSet}, the enriched GO terms of genes in the
#' returned subnetwork.}
#' \item{interestGene}{In NTA, the gene IDs in the subnetwork with 0/1 annotations indicating
#' if it is from user input.}
#' }
#'
#' @export
#'
#' @examples
#' \dontrun{
#' ####### ORA example #########
#' geneFile <- system.file("extdata", "interestingGenes.txt", package="WebGestaltR")
#' refFile <- system.file("extdata", "referenceGenes.txt", package="WebGestaltR")
#' outputDirectory <- getwd()
#' enrichResult <- WebGestaltR(enrichMethod="ORA", organism="hsapiens",
#' enrichDatabase="pathway_KEGG", interestGeneFile=geneFile,
#' interestGeneType="genesymbol", referenceGeneFile=refFile,
#' referenceGeneType="genesymbol", isOutput=TRUE,
#' outputDirectory=outputDirectory, projectName=NULL)
#'
#' ####### GSEA example #########
#' rankFile <- system.file("extdata", "GeneRankList.rnk", package="WebGestaltR")
#' outputDirectory <- getwd()
#' enrichResult <- WebGestaltR(enrichMethod="GSEA", organism="hsapiens",
#' enrichDatabase="pathway_KEGG", interestGeneFile=rankFile,
#' interestGeneType="genesymbol", sigMethod="top", topThr=10, minNum=5,
#' outputDirectory=outputDirectory)
#'
#' ####### NTA example #########
#' enrichResult <- WebGestaltR(enrichMethod="NTA", organism="hsapiens",
#' enrichDatabase="network_PPI_BIOGRID", interestGeneFile=geneFile,
#' interestGeneType="genesymbol", sigMethod="top", topThr=10,
#' outputDirectory=getwd(), highlightSeedNum=10,
#' networkConstructionMethod="Network_Retrieval_Prioritization")
#' }
#'
WebGestaltR <- function(enrichMethod="ORA", organism="hsapiens", enrichDatabase=NULL, enrichDatabaseFile=NULL, enrichDatabaseType=NULL, enrichDatabaseDescriptionFile=NULL, interestGeneFile=NULL, interestGene=NULL, interestGeneType=NULL, collapseMethod="mean", referenceGeneFile=NULL, referenceGene=NULL, referenceGeneType=NULL, referenceSet=NULL, minNum=10, maxNum=500, sigMethod="fdr", fdrMethod="BH", fdrThr=0.05, topThr=10, reportNum=20, perNum=1000, gseaP=1, isOutput=TRUE, outputDirectory=getwd(), projectName=NULL, dagColor="continuous", saveRawGseaResult=FALSE, gseaPlotFormat=c("png", "svg"), setCoverNum=10, networkConstructionMethod=NULL, neighborNum=10, highlightType="Seeds", highlightSeedNum=10, nThreads=1, cache=NULL, hostName="https://www.webgestalt.org/", ...) {
extraArgs <- list(...)
if ('keepGSEAFolder' %in% names(extraArgs) | 'keepGseaFolder' %in% names(extraArgs)) {
warning("Parameter keepGSEAFolder is obsolete.\n")
}
if ('is.output' %in% names(extraArgs)) {
isOutput <- extraArgs$is.output
warning("Parameter is.output is deprecated and changed to isOutput!\n")
warning("Column names of the result data frame are modified.")
}
if ('methodType' %in% names(extraArgs)) {
warning("Parameter methodType is obsolete.\n")
}
if ('lNum' %in% names(extraArgs)) {
warning("Parameter lNum is obsolete.\n")
}
if ('dNum' %in% names(extraArgs)) {
warning("Parameter dNum is deprecated and changed to reportNum.\n")
reportNum <- extraArgs$dNum
}
if (!is.null(cache)) {
cat("Use cache data if available.\n")
}
## TODO: add para test for NTA
errorTest <- parameterErrorMessage(enrichMethod=enrichMethod, organism=organism, collapseMethod=collapseMethod, minNum=minNum, maxNum=maxNum, fdrMethod=fdrMethod, sigMethod=sigMethod, fdrThr=fdrThr, topThr=topThr, reportNum=reportNum, perNum=perNum, isOutput=isOutput, outputDirectory=outputDirectory, dagColor=dagColor, hostName=hostName, cache=cache)
if(!is.null(errorTest)){
return(errorTest)
}
if(is.null(projectName)){
projectName <- as.character(as.integer(Sys.time()))
}
projectName <- sanitizeFileName(projectName) # use for GOSlim summary file name, convert punct to _
if (enrichMethod == "ORA") {
enrichR <- WebGestaltROra(organism=organism, enrichDatabase=enrichDatabase, enrichDatabaseFile=enrichDatabaseFile, enrichDatabaseType=enrichDatabaseType, enrichDatabaseDescriptionFile=enrichDatabaseDescriptionFile, interestGeneFile=interestGeneFile, interestGene=interestGene, interestGeneType=interestGeneType, collapseMethod=collapseMethod, referenceGeneFile=referenceGeneFile, referenceGene=referenceGene, referenceGeneType=referenceGeneType, referenceSet=referenceSet, minNum=minNum, maxNum=maxNum, fdrMethod=fdrMethod, sigMethod=sigMethod, fdrThr=fdrThr, topThr=topThr, reportNum=reportNum, setCoverNum=setCoverNum, isOutput=isOutput, outputDirectory=outputDirectory, projectName=projectName, dagColor=dagColor, nThreads=nThreads, cache=cache, hostName=hostName)
} else if (enrichMethod == "GSEA") {
enrichR <- WebGestaltRGsea(organism=organism, enrichDatabase=enrichDatabase, enrichDatabaseFile=enrichDatabaseFile, enrichDatabaseType=enrichDatabaseType, enrichDatabaseDescriptionFile=enrichDatabaseDescriptionFile, interestGeneFile=interestGeneFile, interestGene=interestGene, interestGeneType=interestGeneType, collapseMethod=collapseMethod, minNum=minNum, maxNum=maxNum, fdrMethod=fdrMethod, sigMethod=sigMethod, fdrThr=fdrThr, topThr=topThr, reportNum=reportNum, setCoverNum=setCoverNum, perNum=perNum, p=gseaP, isOutput=isOutput, outputDirectory=outputDirectory, projectName=projectName, dagColor=dagColor, saveRawGseaResult=saveRawGseaResult, plotFormat=gseaPlotFormat, nThreads=nThreads, cache=cache, hostName=hostName)
} else if (enrichMethod == "NTA") {
enrichR <- WebGestaltRNta(organism=organism, network=enrichDatabase, method=networkConstructionMethod, neighborNum=neighborNum, highlightSeedNum=highlightSeedNum, inputSeed=interestGene, inputSeedFile=interestGeneFile, interestGeneType=interestGeneType, sigMethod=sigMethod, fdrThr=fdrThr, topThr=topThr, outputDirectory=outputDirectory, projectName=projectName, highlightType=highlightType, cache=cache, hostName=hostName)
}
return(enrichR)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.