Nothing
#' \code{aIc.dominant} calculates the subcompositional dominance of a sample in
#' a dataset for a given correction. This compares the distances of samples
#' of the full dataset and a subset of the dataset.
#' This is expected to be true if the transform is behaving rationally in
#' compositional datasets.
#'
#' @param data can be any dataframe or matrix with samples by column
#' @param norm.method can be prop, clr, RLE, TMM, TMMwsp
#' @param zero.remove is a value. Filter data to remove features that are 0
#' across at least that proportion of samples: default 0.95
#' @param zero.method can be any of NULL, prior, GBM or CZM. NULL will not
#' impute or change 0 values, GBM (preferred) and CZM are from the
#' zCompositions R package, and prior will simply add 0.5 to all counts.
#' @param log is a logical. log transform the RLE or TMM outputs, default=FALSE
#' @param distance can be euclidian, bray, or jaccard. euclidian on log-ratio
#' transformed data is the same as the Aitchison distance. default=euclidian
#' @param group is a vector containing group information. Required for clr, RLE,
#' TMM, lvha, and iqlr based normalizations.
#'
#' @return Returns a list with the overlap between distances in the full and
#' subcompositon in \code{ol} (expect 0), a yes/no binary decision in
#' \code{is.dominant} and the table of distances for the whole and subcomposition
#' in \code{dist.all} and \code{dist.sub}, a plot showing a histogram of the resulting
#' overlap in distances in \code{plot}, and the plot and axis
#' labels in \code{main} \code{xlab} and \code{ylab}
#'
#' @author Greg Gloor
#'
#' @examples
#' data(selex)
#' group = c(rep('N', 7), rep('S', 7))
#' x <- aIc.dominant(selex, group=group, norm.method='clr', distance='euclidian', zero.method='prior')
#' plot(x$plot, main=x$main, ylab=x$ylab, xlab=x$xlab)
#' @export
aIc.dominant <- function(data, norm.method='prop', zero.remove=0.95, zero.method='prior',
log=FALSE, distance='euclidian', group=NULL){
# remove features with 0 counts across >95% of samples
data <- remove_0(data, zero.remove)
# zero substitution
data <- zero.sub(data, zero.method)
# aIc.get.data() is the normalization function
size.sub <- floor(nrow(data)/2)
data.sub <- data[1:size.sub,]
x.1 <- aIc.get.data(data, group=group, norm.method=norm.method, log=log)
x.2 <- aIc.get.data(data.sub, group=group, norm.method=norm.method, log=log)
dist.all <- aIc.get.dist(x.1, distance)
dist.sub <- aIc.get.dist(x.2, distance)
# ol <- min(c(sum(dist.all-dist.sub < 0)/length(dist.sub),sum(dist.all-dist.sub > 0)/length(dist.sub) ))
ol <- 1 - (sum((dist.all-dist.sub)/dist.all <0) / length(dist.all))
if(ol < 1) {
is.dom = 'No'
main=paste('Proportion of dominant distances ', round(ol, 3), sep="")
} else {
is.dom = 'Yes'
main=paste('Proportion of dominant distances ', round(ol, 3), sep="")
}
plot.out <- hist((dist.all-dist.sub)/dist.all, breaks=99, plot=F) #,
density.out <- density((dist.all-dist.sub)/dist.all) #,
xlab='Relative distance between full and sub composition '
ylab='Frequency'
return( list(ol=ol,is.dominant=is.dom, dist.all = dist.all, dist.sub = dist.sub, plot=plot.out, density=density.out, main=main, xlab=xlab, ylab=ylab))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.