covRegAbcrf | R Documentation |
Using two reg-ABC-RF objects constructed on the same reference table for two different response variables, this function predicts the posterior covariance between those two response variables, given a new dataset of summaries.
## S3 method for class 'regAbcrf' covRegAbcrf(regForest1, regForest2, obs, training1, training2, ntree=500, mtry=max(floor((dim(training1)[2]-1)/3), 1), sampsize=min(1e5, dim(training1)[1]), paral = FALSE, ncores = if(paral) max(detectCores()-1,1) else 1, paral.predict = FALSE, ncores.predict = if(paral.predict) max(detectCores()-1,1) else 1, ... )
regForest1, regForest2 |
|
obs |
a data frame containing the summary statistics of the observed data sets. |
training1, training2 |
data frames containing the reference table respectively used to train the |
ntree |
number of trees to grow in the forest, by default equal to 500 trees. |
mtry |
Number of variables to possibly split at in each node for the regression random forest. Default is the minimum between 1 and the number of variables divided by 3. |
sampsize |
size of the sample from the reference table used to grow a tree of the regression forest, by default the minimum between the number of elements of the reference table and 100,000. |
paral |
a boolean that indicates whether or not the calculations of the regression random forest (forest used to predict a response from the observed dataset) should be parallelized. |
ncores |
the number of CPU cores to use. If paral=TRUE, it is used the number of CPU cores minus 1. If ncores is not specified and |
paral.predict |
a boolean that indicates if random forests predictions should be parallelized. |
ncores.predict |
the number of CPU cores to use for the regression random forest predictions. If paral.predict=TRUE, it is used the number of CPU cores minus 1. If ncores.predict is not specified and |
... |
additional arguments to be passed on to |
covRegAbcrf
returns predicted posterior covariances between response variables of two reg-ABC-RF objects, for a new data set.
Raynal L., Marin J.-M. Pudlo P., Ribatet M., Robert C. P. and Estoup, A. (2019) ABC random forests for Bayesian parameter inference Bioinformatics doi: 10.1093/bioinformatics/bty867
regAbcrf
,
predict.regAbcrf
,
err.regAbcrf
,
plot.regAbcrf
,
ranger
,
densityPlot
data(snp) modindex <- snp$modindex sumsta <- snp$sumsta[modindex == "3",] r <- snp$param$r[modindex == "3"] r <- r[1:500] sumsta <- sumsta[1:500,] data2 <- data.frame(r, sumsta) model.rf.r <- regAbcrf(r~., data2, ntree=100) N1 <- snp$param$N1[modindex == "3"] N1 <- N1[1:500] data3 <- data.frame(N1, sumsta) model.rf.N1 <- regAbcrf(N1~., data3, ntree=100) data(snp.obs) covRegAbcrf(model.rf.r, model.rf.N1, snp.obs, data2, data3, ntree=100)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.