regAbcrf | R Documentation |
regAbcrf
constructs a regression random forest from a reference table towards predicting posterior expectations, variances and quantiles of a parameter.
## S3 method for class 'formula' regAbcrf(formula, data, ntree=500, mtry=max(floor((dim(data)[2]-1)/3), 1), sampsize=min(1e5, nrow(data)), paral=FALSE, ncores=if(paral) max(detectCores()-1,1) else 1, ...)
formula |
a formula: left of ~, variable representing the response variable; right of ~, summary statistics of the reference table. |
data |
a data frame containing the reference table, composed of response variable (parameter) and summary statistics. |
ntree |
number of trees to grow in the forest, by default 500 trees. |
mtry |
Number of variables to possibly split at in each node. Default is the minimum between 1 and the number of variables divided by 3. |
sampsize |
size of the sample from the reference table used to grow a tree of the regression forest, by default the minimum between the number of elements of the reference table and 100,000. |
paral |
a boolean that indicates if the calculations of the regression random forest should be parallelized. |
ncores |
the number of CPU cores to use. If paral=TRUE, it is used the number of CPU cores minus 1. If ncores is not specified and |
... |
additional arguments to be passed on to |
An object of class regAbcrf
, which is a list with the
following components:
call |
the original call to |
formula |
the formula used to construct the regression random forest, |
model.rf |
an object of class |
Raynal L., Marin J.-M. Pudlo P., Ribatet M., Robert C. P. and Estoup, A. (2019) ABC random forests for Bayesian parameter inference Bioinformatics doi: 10.1093/bioinformatics/bty867
plot.regAbcrf
,
err.regAbcrf
,
predict.regAbcrf
,
covRegAbcrf
,
ranger
,
densityPlot
,
predictOOB
.
data(snp) modindex <- snp$modindex sumsta <- snp$sumsta[modindex == "3",] r <- snp$param$r[modindex == "3"] r <- r[1:500] sumsta <- sumsta[1:500,] data2 <- data.frame(r, sumsta) model.rf.r <- regAbcrf(r~., data2, ntree=100) model.rf.r
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.