err.abcrf | R Documentation |
err.abcrf
returns out-of-bag errors and plot them.
err.abcrf(object, training, paral=FALSE, ncores= if(paral) max(detectCores()-1,1) else 1)
object |
an |
training |
the data frame containing the reference table used to train the |
paral |
a boolean that indicates if random forests predictions should be parallelized. |
ncores |
the number of CPU cores to use for the random forest predictions. If paral=TRUE, it is used the number of CPU cores minus 1. If ncores is not specified and |
A matrix with 2 columns: the number of trees and the out-of-bag errors. Errors are computed from 40 trees to the total number.
Pudlo P., Marin J.-M., Estoup A., Cornuet J.-M., Gautier M. and Robert, C. P. (2016) Reliable ABC model choice via random forests Bioinformatics doi: 10.1093/bioinformatics/btv684
abcrf
,
predict.abcrf
,
plot.abcrf
data(snp) modindex <- snp$modindex[1:500] sumsta <- snp$sumsta[1:500,] data1 <- data.frame(modindex, sumsta) model.rf <- abcrf(modindex~., data1, ntree=100) err.rf <- err.abcrf(model.rf, data1)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.