Nothing
err.abcrf <- function(object, training, paral=FALSE, ncores= if(paral) max(detectCores()-1,1) else 1)
{
if (!inherits(training, "data.frame"))
stop("training needs to be a data.frame object")
if ( (!is.logical(paral)) && (length(paral) != 1L) )
stop("paral should be TRUE or FALSE")
if(is.na(ncores)){
warning("Unable to automatically detect the number of CPU cores, \n1 CPU core will be used or please specify ncores.")
ncores <- 1
}
nmod <- length(object$model.rf$forest$levels)
ntrain <- nrow(training)
if (length(object$group)!=0)
{
ngroup <- length(object$group)
varn <- object$formula[[2]]
training[[as.character(varn)]] <- as.vector(training[[as.character(varn)]])
allmod <- unique(training[[as.character(varn)]])
for (k in 1:ngroup) for (l in 1:length(object$group[[k]]))
training[[as.character(varn)]][which(training[[as.character(varn)]]==object$group[[k]][l])] <- paste("g",k,sep="")
if (!setequal(allmod,unlist(object$group)))
{
diffe <- setdiff(allmod,unlist(object$group))
for (l in 1:length(diffe)) training <- training[-which(training[[as.character(varn)]]==diffe[l]),]
}
training[[as.character(varn)]] <- as.factor(training[[as.character(varn)]])
}
mf <- match.call(expand.dots=FALSE)
mf <- mf[1]
mf$formula <- object$formula
mf$data <- training
mf[[1L]] <- as.name("model.frame")
mf <- eval(mf, parent.frame() )
mt <- attr(mf, "terms")
modindex <- model.response(mf)
if (object$lda) training <- cbind(training,predict(object$model.lda,training)$x)
inbag <- matrix(unlist(object$model.rf$inbag.counts, use.names=FALSE), ncol=object$model.rf$num.trees, byrow=FALSE)
mimi <- predict(object$model.rf, training, predict.all=TRUE, num.threads=ncores)$predictions
if (object$model.rf$num.trees < 40) stop("the number of trees in the forest should be greater than 10")
sequo <- seq(40,object$model.rf$num.trees, length.out = 20)
res <- oobErrors(sequo = as.integer(floor(sequo)), ntrain = as.integer(ntrain), mod = as.integer(labels(modindex)),
ntree = object$model.rf$forest$num.trees, modindex = as.numeric(modindex), inbag = inbag, mimi = mimi)
plot(floor(sequo),res,ylab="Prior error rate",xlab="Number of trees",type="l", ylim=range(res))
cbind(ntree=floor(sequo), error.rate=res)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.